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T he languages that come closest to 
providing the tools needed for a 
comprehensive computer vision 

system fall under the category of “object- Vision systems use a 

stract data types for vision applications, he 
or she should not have to write file utilities 
for each new type that might have per- 
sistent instances. In defining types and 

oriented database languages.” As in the variety of complex data their behaviors, the programmer should 
cases of CAD/CAM environments, soft- not have to define a persistent version of 
ware engineering environments, and engi- structures to represent the type and a nonpersistent version. 
neering database environments, our data is Someone writing an operation should not 
too complex to model with traditional their knowledge of the have to worry about whether an argument 
relational database management systems. images being processed passed to the-operation is persistent. There 
Such systems, as well as systems pro- should be a minimal performance penalty 
viding data modeling using semantic or 
functional models, use languages specifi- 
tally designed for interaction with highly 
structured databases. In addition, they 
don’t often provide the semantics of a full, 
imperative language such as Common 
Lisp or C. 

and the application 
domain. A new 

For this reason, we do not mention all 
the contrasts between our language/data 
management system and those of the rela- 
tional, semantic, and functional sort. Most 
of the comparisons we make are between 
our language and the others with object 
orientation and persistence. Ideas for the 
data model have come from earlier work 
on data models for geographic information 
systems.’ 

programming language 
and data management 

system approach is 
suggested. 

for all this. 
(2) The programmer must be able to 

build and specify behavior for highly con- 
netted networks of objects, yet at the same 
time have type constructors such as sets, 
sequences, arrays, and relations that im- 
pose order on these possibly arbitrary 
graphs of objects. If someone needs to 
implement a threaded tree or a heap, a 
unified, full, and imperative syntax should 
be available. We do not want two lan- 
guages (a database manipulation language 
and a procedural language), as is the ap- 
proach with relational DBMSs. (1) Persistent data objects (types, op- 

erations, and instances of types) should 
appear to the programmer no differently 
than do transient objects. The only differ- 
ence between a persistent and a transient 
object of the same type is that the persistent 
one continues to exist after the current user 
session terminates. If the applications 
programmer’s task is to implement ab- 

Through a survey of people who have 
vision applications, we have found that the 
following properties are needed in a 
language for programming computer vi- 
sion tasks: 

(3) With such interconnected data sets, 
it becomes too much of a task for the 
programmer to keep track of the references 
to objects and free their space when no 
longer referenced. Garbage collection on 
both transient and persistent objects is 
necessary. Some systems, such as E2 and 
Extra/JZxcess,3 require explicit deletion of 
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Figure 1. An example of a task in automatic pose determination. Boxed text indicates processing steps. Unboxed text indi- 
cates the type of the data object produced by the preceding processing steps. 

persistent objects. For good reason, there 
don’t appear to be any systems that use 
reference counting as a collection me- 
chanism. 

(4) The object-oriented approach to data 
modeling and programming can provide 
much of the solution to our programming 
and data modeling needs. However, we 
require a set-and-relation semantics that 
supports uniqueness constraints as power- 
ful as those in the relational model. No 
object-oriented languages to date support 
such semantics and programmers encoun- 
ter interesting problems when trying to 
support them in an object-based system. 

domain, want to do computer vision tasks. 
This means that an interpreted environ- 
ment is vital. However, a compiler is also 
needed to reasonably perform expensive 
vision tasks. Furthermore, since expert 
system shells generally perform symbolic 
computation, an underlying language good 
for symbolic computation would be help- 
ful. Some object-oriented database sys- 
tems, such as E and Adaplex,4 only provide 
compilation. Gemstone and Orion provide 
both compilation and interpretation. 

(5) An expert system shell (written in 
the language) is needed for those who, 
although unfamiliar with the implementa- 
tion and interrelationships of the abstract 
data types developed for an application 

(6) Much of the database integrity sup- 
port that industrial-strength object-ori- 
ented databases and relational DBMSs 
provide is overkill for what we need to do. 
For the most part, data objects used by 
more than one person are read, not written, 
in processing steps. For example, several 
users might use the same images to test 

algorithms. They only read them. We do 
not have the same problems a group work- 
ing on a CAD design has, when multiple 
users are performing updates to the same 
objects. In most cases, when a database of 
objects (for example, some images) is 
being used by one person and a new user 
wants to access the database, the new user 
does so at the risk that someone else will 
commit a transaction after the new user has 
committed his or her own. The situation is 
analogous to editing a document in a multi- 
user system. If a user wants to insure that 
his or her changes are not overwritten, the 
user makes his or her own copy of the 
database. Thus far, we have not seen the 
need for transaction and concurrency sup- 
port beyond what Unix (or a comparable 
system) provides. 

(7) A user should be able to create per- 
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sistent data objects, copy them, and make 
them accessible to other executables on 
other machines. Some systems, such as 
Gemstone and E, impose the constraint 
that there is one large database with each 
object in it having a unique ID over all 
space and time. This makes it difficult to 
share objects between executables using 
different databases because the system 
views the objects it has created as the only 
ones in existence. 

(8) There is no good reason to invent a 
new programming language to do these 
things if one exists that comes close to 
providing the necessary semantics. Taxis,5 
Excess, and S (a language implementing 
persistent objects for statistical use) are 
languages designed from the ground up. 
Adding minor extensions to the syntax of 
an existing language will attract more 
programmers and enable us to spend more 
time on the semantics specific to persis- 
tence, data modeling, and computer vision 
and less on garbage collection and com- 
piler bugs. For this reason, we have chosen 
to extend the implementation (leaving the 
syntax intact) of a Common Lisp as a bed 
for providing all of the properties men- 
tioned above. 

In the following sections, we use an 
example from automatic pose estimation 
to illustrate the necessity for the above 
properties in a language system, we indi- 
cate where other languages and data man- 
agement systems fail to provide these prop- 
erties, and we discuss the type constructors 
used in our system and features of the 
language semantics of our system. 

Example of an 
application 

Pose estimation is the process of deter- 
mining the position and orientation of an 
object from an image of the object. In 
model-based vision, the vision system 
works with stored models of the objects it 
expects to see. It extracts features such as 
line segments, holes, and corners from the 
image and creates a data structure repre- 
senting the features, their attributes, and 
their interrelationships. It then matches the 
data structure extracted from the image to 
the stored models to 

(1) determine the identity of the object 
and 

(2) find the correspondence between 
the features of the image and the fea- 

tures of the correct model so the 
pose can be determined. 

The on-line phase of the system is the 
process of extracting features from an 
image, constructing the data structure, 
performing the matching operation, and 
determining the pose. Generally, the on- 
line phase has to execute rapidly to meet 
the time constraints of the application task. 
As vision systems become more and more 
automated, many systems also employ an 
off-line phase to construct the stored mod- 
els from external data and determine the 
features that will be used in the matching 
process. 

Figure 1 shows the complete description 
of a pose estimation system. The input to 
the off-line phase of the system is a CAD 
model of an object that will be coming 
down an assembly line. The input to the on- 
line phase is an image of the known type of 
object. The task is to determine the posi- 
tion and orientation of the object relative to 
the camera. We can, from this example, see 
much of what a programming language 
needs to provide to easily support writing 
such an application. 

In Figure 1, the sequence of operations 
on the left-hand side represents the off-line 
construction of a set of view classes. The 
sequence of operations on the right repre- 
sents the on-line pose determination phase. 
These sequences closely resemble the 
work of Lu and Shapiro.6 

The off-line phase can be summarized as 
follows: The 3D CAD model that comes 
from a geometric modeling system is con- 
verted to a vision model, here deemed the 
“CAD model.” This representation is 
three-dimensional, and the image (and thus 
the extracted features used in matching) is 
two-dimensional. 

To facilitate the matching, the CAD 
model is converted into a set of view 
classes, each representing one of the topo- 
logically distinct views of the object. Each 
view class is represented by a relational 
pyramid, a hierarchical relational structure 
that describes a view class in terms of the 
features that will appear in an image of that 
class and the relationships among them. 
Primitive features appear at level zero. 
Level one features represent relationships 
among level-zero features. In general, 
level-k features represent relationships 
among features from levels 0 to k- 1. 

Figure 2a is a line drawing of an object, 
and Figure 2b shows a simplified rela- 
tional pyramid structure describing the 
line drawings of that view class. To rapidly 
determine the view class of the object in 

the image, a second structure, called a 
summary pyramid, is constructed from the 
relational pyramid. If the relational pyra- 
mid has a relation R with c tuples [ ((N,,t,,), 
(N&h . . . . (N,gJl,j = 1, . . . . cl, where the 
Nas are relation names and the tUs are enti- 
ties from lower levels, the summary has a 
corresponding relation R with a single 
tuple ((N,, . . . . N,), c). Figure 2c illustrates 
the summary pyramid for the relational 
pyramid of Figure 2b. 

In the on-line phase, the input image is 
processed to a point where the features can 
be extracted and a relational pyramid can 
be built. Next, a summary pyramid is con- 
structed from this relational pyramid de- 
scribing the features extracted from the 
image. At this point, this summary pyra- 
mid is compared (via an index structure) to 
the summary pyramids of the various view 
classes, and one is chosen based on a simi- 
larity measure. The correspondences de- 
termined from matching the relational 
pyramid of the image with the relational 
pyramid of the selected view class deter- 
mine the pose of the object. 

Without knowing more about the opera- 
tions on and representation of CAD mod- 
els, relational pyramids, summary pyra- 
mids, and index structures, we can make 
several observations about aspects of this 
system that require underlying support 
from the implementation language: 

(1) Traditional image-processing sys- 
tems do not provide enough support in the 
way of data types and operations. Note that 
a relatively small part of the application is 
low-level image processing. Computer 
vision systems use data structures that are 
far more complex than plain images. At the 
same time, structures such as multidimen- 
sional images must be easily representable 
and manipulatable with the tools provided. 
An extension of the core system will pro- 
vide structures and operations for low- 
level image processing. 

(2) Data objects with complex structure 
need to exist between applications and 
computers. The two dotted boxes (see 
Figure 1) represent the on-line and off-line 
parts of the application domain. They are 
distinct processes. For each index struc- 
ture produced by the off-line phase in an 
industrial system using the application, 
many objects will come down an assembly 
line whose poses are unknown and must be 
determined by the system. The two pro- 
cesses are possibly on the same or different 
machines/networks. We see that the on- 
line phase uses data objects produced by 
the off-line phase. These objects need to 
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Figure 2. An example of the low-level 
features of an object (a), the relational 
pyramid constructed from it (b), and 
the summary pyramid constructed 
from the relational pyramid (c). 

As shown in Figure 3, the base system is 
a set of databases, an interpreter, and a 
compiler. The system databases contain 
the elementary types and functions. They 
also contain various objects used by the 
system. Programmers can add databases, 

Figure 4 shows basic type constructors. 
They can be used to build the types needed 
for applications. Below, the word object 
refers to an instance of an atomic type, an 
array, a relation, a record, a sequence, or a 
set. As a description of some entity, the 
word object further implies that it can be 
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persist between processes. 
Some persistent object systems, such as 

Gemstone,’ use one global database giv- 
ing unique identifiers to each object cre- 
ated by the system. Two separate instances 
of the system cannot share objects, since 
both have used the same object identifiers 
for different objects. This problem can be 
eschewed by making object identifiers so 
long (greater than 100 bits) that the identi- 
fier can contain a stamp of the executable 
that created it and hence guarantee unique- 
ness across more machines than will exist 
in the next thousand or so years. Gem- 
Stone, however, only uses 32 bits for ob- 
ject IDS. 

(3) There are objects with identical 
structure, some persistent and some tran- 
sient. In Figure 1, when the pose of the 
unknown object is being determined in the 
last step of the on-line phase, the system 
uses two separate relational pyramid struc- 
tures as its input. The first is a relational 
pyramid created by the off-line phase, 
which must be in permanent storage before 
the on-line phase begins. The second, 
which is a relational pyramid created ear- 
lier in the on-line phase, is not persistent. It 
does not exist after the on-line phase fin- 
ishes executing. 

The issue of whether an object is persis- 
tent should not affect the design of types 
and the coding of functions. When pro- 
grammers write a non-system-level func- 
tion, we feel that usually they would like it 
to work on actual parameters (arguments) 
that are either local to the process or persis- 
tent, as long as they are of the right type. 

Furthermore, when a programmer de- 
signs a new type, he or she should not have 
to create two of them that only differ in 
whether instances of the type are persis- 
tent. Of course, both in writing functions 
and creating new types, we might want to 
override this feature. 

An obvious implication of all of this is 
that the programmer should never have to 
worry about how to write a type of object to 
a file or whether the provided disk repre- 
sentation is compact enough. 

The system model - 
detachable databases 

put functions and types in the databases 
that they create, and create instances of 
these types and put them in the databases. 

The idea is that the system is tailorable. 
If a cell morphology package exists on the 
computer system, a user can access the 
database in which it is contained. It is not 
a permanent part of the system, as is the 
case when new types are added to a Small- 
talk or Gemstone system. When a cell 
morphology package is added, the pack- 
age’s programmer does not start from 
scratch. The programmer builds on top of 
packages that other users have created. In 
this case, the cell morphology package 
programmer is probably using functions 
and types from an image-segmentation 
package. These types would be two-di- 
mensional images, contingency tables, 
symbolic images, and region relations (sets 
of objects where each object contains all 
sorts of relevant information about a re- 
gion of a symbolic image). 

In some other object-oriented lan- 
guages, such as Gemstone’s OPAL and E, 
each executable (OPAL interpreter session 
or E program) is connected at runtime with 
one database containing a universe of ob- 
jects that all users share. It is difficult to 
build a subsystem, such as adatabase, with 
only image-processing operations and 
types. We prefer to think of each database 
as an address space containing objects 
referencing either local objects (in the cur- 
rent database) or objects in outside data- 
bases. In this way, our universe of persis- 
tent objects is partitioned into modules 
with related objects that can be transferred 
between machines and executables with- 
out severe problems. 

The core system, of course, will be de- 
signed with the foresight that many of the 
derived systems will be doing matrix 
manipulation as well as more symbolic 
computation. Traditionally, programming 
languages have been designed with syntax, 
semantics, and implementations that em- 
phasize one of these types of computation 
over the other. 

Some type 
constructors 



Core set of databases containing: 
Elementary prototype objects 
Elementary operation objects for the prototypes 
System data objects 

Interpreter and compiler 
Storage manager 

Other databases containing 
image prototypes 
Image processing operations Cells, nuclei, images, statistics 

Other databases containing 
----* 2D segmentation prototypes 

Other databases containing 

Operations on these prototypes 
CAD pose determination prototype objects 
Operations for these prototypes 
CAD models, relational pyramids, summary 

pyramids, index structures, images, etc. 
Other databases containing 

+ 3D representation prototypes 
Operations on the prototypes Other databases containing 

Prototypes for geographical objects 
+ Operations for these prototypes 

,, States, cities, rivers, wooded areas, maps, etc. 

Other databases containing 
Prototypes for 3D reconstruction and display 
Operations for these prototypes 
Hand digitized serial sections, transformation matrices, 

display lists, tubes, ribbons, contours, surface normals, etc. 

igure 3. How user environments can be derived from the core system. 

referenced from other objects. In contrast, 
the word value refers to an entity to which 
other objects may not hold references. The 
elements of an array, for example, may be 
values in some cases. In what follows, we 
give informal definitions of the type con- 
structors for objects available in the lan- 
guage. 

l An instance of an array type is a recti- 
linear arrangement of either atomic values 

l An instance of an atomic type is an 
instance of an integer, float, double, char- 
acter, or enumerated type. Such an in- 
stance is an object and may have multiple 
references to it. There is a distinction be- 
tween the sort of values sometimes held in 
the cells of arrays and fields of records, on 
one hand, and instances of atomic types, on 
the other hand. Instances of atomic types 
are objects and may have references to 
them. The elements of arrays and records 
may or may not have object identity (de- 
pending on the type of array or record). 
Their values may only be accessed by 
operations on the array or record contain- 
ing them (which is an object). 
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Figure 4. Some type constructors for modeling the highly structured data we find 
in applications. 

or references to objects. Arrays are a pa- 
rameterized type parameterized on the type 
of the cell value. Strings and vectors are 
instances of array types. 

l An instance of a sequence type is like a 
one-dimensional array except that inser- 

l An instance of a record type is like a 
“struct” (a multifield structure) in C. One 
can set and retrieve the values of its fields 
using the names for its fields. The various 
record types form a lattice representing an 
is-a relationship (also called a generaliza- 
tion hierarchy). Both fields and functional- 
ity are inherited through this lattice. The 
fields of a record can be atomic or refer- 
ences to objects. 

tion into and deletion from arbitrary posi- 
tions in the sequence are allowed. Se- 
quences are a parameterized type in the 
same way as arrays. 

l An instance of a ser type is an unor- 
dered collection of references to unique 
objects, where an object is, in general, an 
instance of a record type. The elements 
referred to by a set may be referenced from 
other objects. Sets are a parameterized type 
parameterized on the type of the elements 
referenced. (The meaning of the expres- 
sion “an object is unique within a set” will 
be discussed later in this article.) 

l An instance of a relation is similar in 
some respects to an instance of a set. The 

47 



Figure 5. Some typical data structures derived from the type constructors. 

main difference is that the elements of a 
relation do not have identity in the way 
records do. It is impossible to change or 
retrieve their attribute values without per- 
forming an operation on the relation as a 
whole. Other objects cannot maintain ref- 
erences to the tuples of a relation. Relation 
types are parameterized similarly to sets. 
One feature of relations that allows some- 
what more flexibility than in standard rela- 
tional models is that the elements in a 
domain of a relation may be object refer- 
ences. 

l An instance ofa symbol is an entity that 
allows the programmer to give a name to 
the object bound to the symbol (this object 
would be the value of the symbol). Sym- 
bols play the role of variables in some 
programming languages. The difference is 
that, whereas variables in most languages 
have a type associated with them, symbols 
are untyped. It is the object to which a 
symbol is bound that has a type. 

Tasks in computer vision often involve 
transformations of data that may be gener- 
ally in the form of arrays to data that can 
take a variety of forms. More array-like 
data is often produced in image-processing 
steps. At subsequent steps, such as in mid- 
and high-level vision, data with more in- 
teresting structure is produced. 

Figure 5 shows examples of the forms 
data can take. A, B, and C are symbols that 
refer to objects. 

A is a record that has a set-valued field. 
The set refers to three records, each refer- 
ring to one of the others. A is interesting in 
that it shows that, using the type construc- 
tors, we can have data that is an arbitrary 
graph. At the same time, structure can be 
imposed on the graph by using a set, which 
would allow, for example, iteration over 
the nodes of the graph. Soon, we will pro- 
vide an example of an application that 
heavily uses data in this form. 
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B represents a record that refers to an 
array object. This type of construct might 
be, for example, a symbolic image (an 
image where each pixel’s value represents 
the region to which it belongs). In one 
field, the record object would contain in- 
formation about the meaning of the symbol 
values. Another field might contain infor- 
mation regarding the maximum and mini- 
mum symbol values. Another field refers 
to the array itself. 

In contrast to A, where data is nodal and 
roughly forms a graph, C represents data 
that is hierarchical. It is similar to what has 
been called (in database literature) a nested 
relation (or NF* relation’). C differs in that 
its subrelations have object identity, 
whereas an NF’ relation does not have 
object identity. It is also possible for the 
elements of the tuples of a relation to refer 
to objects other than relations. 

A, B, and C are fairly typical of the 
forms data takes for the vision applications 
we have surveyed. In most cases, one or 
more symbols point into a connected graph 
of objects. We can refer to the connected 
graph a symbol refers to as an object graph. 
Symbols can be part of an object graph. 
The object graph is also often constrained 
by the procedures that manipulate it to be a 
tree, list, or directed acrylic graph (DAG). 
Object graphs are further constrained by a 
strict typing system that restricts what an 
individual reference (arrows in Figure 5) 
may point to. The destination of a refer- 
ence is constrained to a specified type and 
that type’s subtypes. Since types form a 
singly rooted lattice, with root t, a refer- 
ence constrained to be of type t is, in fact, 
completely unconstrained. 

The CAD model 

Figure 6 shows the record types for a 
world of CAD objects. One of these worlds 

contains a single instance of the CAD- 
World type, and then multiple record in- 
stances of the types Object, Edge, Vertex, 
Arc, and Face. In a world of CAD objects, 
there are no record instances of the types 
Boundary, Surface, lDpiece, and 2Dpiece 
because each of these types is used only as 
a parameter to a relation object in some 
other type. This means there are only tuples 
of the above types, and no records. 

All of the types except CAD-root-type 
are subtypes of CAD-root-type. In keeping 
with a standard object-oriented paradigm, 
this means that all types contain the fields, 
as does CAD-root-type. More specifically, 
if we define the type CAD-World as fol- 
lows (using a more readable syntax than 
Common Lisp) 

CAD-World := Type( is-a = CAD-root- 
type 1 ( 

objects: Set( type = Object ); 
transformation: Function; 
points: Array ( dimensions = <*,3>, 

type = Float ); 
I 

the following function and macros 

CAD-World.make := Function( name: 
Symbol; 

bounding-box: box(dimensions = 3); 
objects: Set (type=Object); 
transformation: Function; 
points: Array (dimensions = <*,3>, 

type = Float);) 
returns CAD-World 

I “’ I 

objects := Macro( Arg: CAD-root- 
type ) returns Set(type = Object) 

1 “’ I 
transformation := Macro( Arg: CAD- 

root-type ) returns Function 
( “’ I 
points := Macro( Arg: CAD-root-type ) 
returns Array ( dimensions = <*,3>, 

type = Float ) 
I “’ t 

are automatically created by the system 
and can’t be redefined without redefining 
the CAD-World type. 

If we do the following: 

some-CAD-World := CAD World. 
make (some-name, some-objects, 
some-box, some-transformation, 
some-points); 

and then want to know the objects in 
“some-CAD-World,” we just say 

COMPUTER 



CAD root-type 

Name: Symbol 
Type: String 
Bounding box: Box(Dimensions = 3) 

CAD World (is a CAD root-type) Vertex (is a CAD root-type) 

I Objects: Set(type = Object) 
Transformation: Function I 

Object (is a CAD root-type) 

Topology: Set(Type = Edge) 
Vertex: Set(Type = Vertex) 

Edge (is a CAD root-type) 

Start: Vertex 
End: Vertex 
Arc-left: Arc 
Arc-right: Arc 
Face-left: Face 
Face-right: Face 
Angle: Float 

Face (is a CAD root-type) 

Surfaces: Relation(Type = Surface) 
Boundaries: Relation(Type = Boundary) 
Transformation: Function 

Boundary (is a CAD root-type) 

Transformation: Function 
Arcs: Set(Type = Arc) 

Arc (is a CAD root-type) 

Transformation: Function 
1 D pieces: Relation(Type = 1 D piece) 

Surface (is a CAD root-type) 

I 2D pieces: Relation(Type = 2D piece) 
Transformation: Function I 

1 D piece (is a CAD root-type) 

Transformation: Function 
Equation: Function 

20 piece (is a CAD root-type) 

I Transformation: Function 
Equation: Function I 

Figure 6. The types for a world of CAD objects. Each box contains the names and types of fields for a record type. 

objects-in-some-CAD-World:= 
objects(some-CAD-World); 

When the type CAD-root-type was cre- 
ated, the macro bounding-box was defined 
as follows: 

bounding-box := Macro( arg: CAD- 
root-type ) returns box(dimensions 
= 3) 

1 ... I 

If we want to know the bounding box for 
“some-CAD-World,” we just say 

bounding-box-for-some-CAD-World 
:= bounding-box(some-CAD- 
World); 

Since the type of some-CAD-World is a 
subtype of CAD-root-type (which is the 
required argument type for the function 
bounding-box), the call to bounding box is 
legal. It is possible that the other type, say 
Foo, that is not a subtype of CAD-root- 
type will have a field called bounding-box 
whose type is, say, Bar. If this happens, the 
following function definition will occur: 

bounding-box := Macro( arg: Foo ) 
returns Bar 

I ... I 

The bounding-box function, as well as 
all the other functions described so far, are 
generic and hence such a redefinition does 
not cause a problem. 

Figure 7 shows an example of a function 
that performs a specific kind of query on a 
CAD-World. Get-adjacent-faces takes as 
parameters a CAD-World and a face and 
returns all faces adjacent to the face in the 
particular CAD-World. The “For” state- 
ments allow iteration over the elements of 
one or more sets or relations, selecting 
those records or tuples that satisfy the 
predicate in the “Where”clause (the predi- 
cate defaults to logical true if no “Where” 
clause is specified). When appropriate 
keys exist on the sets over which selection 
is being performed, they are used to select 
the elements satisfying the predicate. Oth- 
erwise, straightforward iteration over all 
elements must be used. 

We can make several observations about 
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Get-adjacent-faces := Function(some-CAD-World: CAD-World; some-face: 
Face) { 

result: Sequence; 
For (i in some-CAD-World.objects) ( 

For (j in i.topology) ( 
if @face-left = some-face) 

push(j.face-right, result); 
else push(j.face-left, result); 

) Where (j.face-left = some-face II j.face-right = some-face); 
break; 

return(result); 

Figure 7. An example of a query on an instance of a CAD-World data structure. 

I I 

Figure 8. The relationships between instances of types in a CAD model. A node 
labeled A pointing to a node labeled B with a solid arrow implies that each in- 
stance of type A references an instance of type B. A node labeled A pointing to a 
node labeled B with a dashed arrow implies that each instance of type A refer- 
ences a set or relation of instances of type B. (The difference in dash length 
means nothing.) This figure leaves out many of the types in the CAD model. 

the code example above: 

l Macros. The language supports a 
powerful macro facility that the compiler 
can exploit to create efficient code. Our 
high-level extensions to Common Lisp 
will use macros. One of the most useful 
features is that macros can be used to de- 
fine new functions. 

l The “:=” assignment syntaxfor types, 
functions, and macros. This syntax in the 
example is meant to make it clear that 
types, functions, and macros are data ob- 
jects themselves and can be persistent or 
nonpersistent. The types, functions, and 
macros of the Common Lisp kernel are 
viewed as a collection of persistent objects 
by the system. 

l Why extend Common Lisp? Why not 
extend CLOS instead? At first glance, it 
seems it might be more reasonable to ex- 
tend CLOS9 (Common Lisp Object Stan- 
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dard) directly to provide persistence, since 
CLOS includes many more object-oriented 
features than does Common Lisp. How- 
ever, in CLOS, the emphasis is on slot- 
based objects. We think of the set, se- 
quence, and relation types of our language 
as parameterized types. It would be un- 
natural to implement these types as slotted 
objects, as you would have to do using 
CLOS. Another point is that we would like 
to use some of the strict typing features of 
Common Lisp (such as typed arrays) that 
would be somewhat awkward to use in 
CLOS. Furthermore, a straightforward 
extension of CLOS cannot provide certain 
features that we think would eventually be 
useful (for example, parameterized types). 
Lastly, since we will be providing a su- 
perset of Common Lisp, it will be fairly 
straightforward to build CLOS on top of 
our Common Lisp if there are those who 
want to use a CLOS with persistent objects. 

l Protection of the underlying represen- 
tation of abstract data types. In many lan- 
guages, the operations belonging to a class 
have access to the class’ instance variables, 
whereas nonmember functions do not and 
instead have to rely on the interface created 
by the member functions. In our model, we 
follow the approach to record access that 
Common Lisp uses for structure access and 
CLOS uses for slotted object access. This 
entails that, for any function, all access to 
the data contained within an object is 
through a functional interface. To create 
privacy, the privacy semantics of standard 
object-oriented languages in CLOS or 
Common Lisp, a type can be created in a 
package with the accessors made private to 
the package. 

Interconnectedness of 
object graphs 

Each arrow in Figure 8 represents an 
attribute of the type at the base of the arrow. 
This sort of picture shows up in a lot of 
semantic data modeling literature. In the 
ER model as discussed in Tsichritzis and 
Lochovsky,” each arc would be repre- 
sented as a named relationship between 
objects of the types at either end of the 
arrow. In the functional data model imple- 
mented in Daplex,4 each arrow would be a 
function with the type at the tail represent- 
ing the domain and the object at the head, 
the range. 

In each case, these data models began as 
database designing tools. Often, a query 
language was supplied that allowed que- 
ries on a database to be embedded in an- 
other procedural language. In the Daplex 
case, a language was built around the data 
model that was more expressive than a 
query language, but not as flexible as a 
standard procedural or functional lan- 
guage. 

From the outset, our plan has been to 
bring the data modeling tools closer to 
what is found in standard programming 
languages. Hence, our objects explicitly 
reference what they need to. The language 
for data modeling should be uniform for 
defining the types of both persistent and 
transient objects. 

As a result, we provide a more complete 
semantics for sets than is found in nonper- 
sistent languages by allowing the program- 
mer to have control over what constitutes 
uniqueness of a set’s members. We provide 
less constraints than do those languages 
exclusively for database programming. 
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In normal programming, the data ob- 
jects have no constraints (except type 
constraints) unless the programmer builds 
them into the operations that change these 
objects. We take the same approach. The 
data model provides a minimum number of 
constraints so the difference between pro- 
gramming with persistent objects and nor- 
mal in-core data structures becomes mini- 
mal. 

In some ways, this effort resembles that 
of Gemstone, since the idea behind Gem- 
Stone was to add persistence to Smalltalk. 
Gemstone tries to treat persistent objects 
the same way as transient ones. 

The lack of set 
semantics in object- 
oriented languages 

Figure 9 shows part of an instance of a 
CAD model. It illustrates that objects can 
often belong to more than one set. In this 
case, an instance of an Object type and an 
instance of a Vertex type maintain sets of 
Edge objects. The instance of type object 
maintains its set through the topology at- 
tribute. The instance of type Vertex main- 
tains its set through the edges attribute. 

This sharing of objects does not occur 
just between sets. Sharing can occur be- 
tween two nonset attribute values or be- 
tween a set object and a nonset attribute. 
An example of the latter case happens 
between Object instances and Edge in- 
stances. Object instances contain a set of 
instances of type Vertex (representing the 
vertices in the object). Edge instances refer 
to a vertex for their start and end points. 
Often the same vertex will be referenced 
both through the set object and through an 
attribute of the Edge object. 

We can see, then, that to support our 
applications, it is important to implement 
the abstract data type of a set whose ele- 
ments may be referred to from elsewhere. 

These set semantics are provided by 
object-oriented languages such as Gem- 
Stone and Smalltalk. But the languages 
providing these semantics fail to provide 
other set semantics that are also necessary. 
In these languages, a set is a collection of 
unique objects where uniqueness has the 
following definition: Objects u and b are 
unique if they do not have the same object 
identifier. This, of course, implies that for 
sets of this type, there could be multiple 
members with different object IDS but 
exactly the same attribute values. We see a 

December 1989 51 

L 

Vertex, 

V 

Set, 
V 

Set, 

Figure 9. How objects can be members of more 
record objects; squares indicate set objects. 

than one set. Ellipses indicate 

need to support uniqueness constraints 
beyond the requirement of unique object 
IDS for set members. 

Providing such uniqueness constraints 
is something relational DBMSs do well. 
When we create a set or relation, we would 
like to be able to create uniqueness con- 
straints similar to the uniqueness con- 
straints that exist in relational DBMSs. 

Three basic problems come up when 
attempting this in an object system such as 
ours: 

(1) The members of sets and relations 
can have fields that are nonatomic. This is 
not true in the relational model. As a result, 
what it means for a member of a set or 
relation to be unique with respect to the 
others is necessarily more complicated 
than in the relational model. 

(2) Since the members of sets (which 
are records) are objects, insuring that sets 
are not corrupted by updates done through 
outside references is a problem. While a 
record is a member of a set, it can be 
updated through another object that has a 
reference to it. If a field guaranteed to be 
unique in a set is updated to a nonunique 
value, the set is corrupted. 

(3) Since we want detachable databases 
(as compared with a one-world model such 
as Gemstone) in our model, a set possibly 
exists in a database not currently linked 
that contains a record in a database that is 
linked. If a key field of this record is 
updated through some outside reference, 
the uniqueness constraints of the set could 
be corrupted. 

Conventional programming lan- 
guages do not provide set semantics 
either. There are no programming lan- 
guages that implement sets of records like 
objects in a complete way. The set type 
constructor, as we use it, is pervasive in the 
example application domains that we have 
looked at. Hence, support must be pro- 
vided for it at the language level. 

If we do not extend the semantics of 
some already existing language, or create a 
new language that supports set semantics, 
programmers who write vision applica- 
tions will end up doing it repeatedly as a 
procedural interface in each new domain. 

Edge example. The set-theoretic defini- 
tion of a relation requires a relation to 
contain unique n-tuples (where two n- 
tuples are unique if they do not have iden- 
tical attribute values). For practical pur- 
poses, this is a minimal and infrequently 
used constraint. In reality, relational data- 
base schemas impose stronger constraints 
on what may be inserted in a particular set 
or relation by specifying that no two tuples 
will have the same value on certain fields 
or combinations of fields. Each such field, 
or combination of fields, is called a key. 
When no key is specified, uniqueness is 
commonly not enforced on the attributes. 
Instead, a system-maintained, globally 
unique tuple identifier is used as an im- 
plicit additional field and serves as a key. 
In general, some sort of index structure is 
maintained for each key. 

We would like to be able to impose such 
constraints on the set and relation types in 



our language. For example, we would like 
to impose the constraint on the topology 
field for the type Object in Figure 6 that no 
two edges have the same start and end 
point. In particular, we would like a run- 
time error to be signaled if an insertion into 
the set of edges violates one of these con- 
straints or if an instruction is executed that 
changes the value of start or end in such a 
way that the record is no longer unique 
according to the above constraints. 

We could define the set of constraints as 
follows: 

kl := Key(type = edge) ( 
start,end : UNIQUE 

I 

Then, the topology field of the Object 
type could be changed to 

topology: Set(type = Edge, keys = kl); 

Before making this change, uniqueness 
would have been guaranteed on the object 
identifiers of the individual edges over the 
topology set. This is less of a constraint 
because it is possible that a user could have 
instantiated two edge objects with identi- 
cal start and end points. If topology had 
been declared with the kl constraint, upon 
insertion of the second edge record with 
identical start and end points, the kl con- 
straint would not have been met and the 
insertion would not have been allowed. 

Perhaps we would like to be even more 
specific about what constitutes a unique 
edge over the topology set. If we created 
another key and used it in the definition of 
the topology relation: 

k2 := Key(type = edge) ( 
start.location, end.location 

: UNIQUE; 
I 

we would protect the set against the possi- 
bility of there being two edges with differ- 
ent object IDS whose start and end points 
have different object IDS but the same 
value for their location (the same index 
into the array of points). 

Continuing with the example, if record 
types had been defined for R-tree nodes” 
and operations written that implemented 
insertions and deletions into an R-tree, we 
might want to index the topology field on 
the bounding boxes of the edges. One 
bounding box possibly corresponds to 
more than one edge, so we would not spec- 
ify such a key as a uniqueness constraint. 
Instead, we might say 
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k3 := Key(type = edge) [ 
startlocation, end.location 

: UNIQUE; 
bounding-box: NONUNIQUE; 

I 

Given an object ID of a bounding box. 
this would allow us to find all edges for 
which it is a bounding box in logarithmic 
as opposed to linear time, since a key 
would exist mapping the object IDS for 
bounding boxes to edge objects. 

The full semantics of keying, as dis- 
cussed above, is not supported in data 
models other than the relational model: 

l In other object models, the unique- 
ness constraint is on the object ID of 
members. Were we to simply put the con- 
straint that the object IDS of the edges must 
be unique, we could end up with more than 
one edge with all the same field values, or 
the same start and end points, or the same 
left face and right face. 

l In other object models, keys on at- 
tributes (if allowed) are on single fields. 
We would like to be able to key over a 
combination of fields. Taking the Edge 
type in Figure 6 as the example, we would 
like to be able to specify that it is only the 
combination of start and end that is re- 
quired to be unique over a set. There can be 
more than one set member with the same 
value for start or the same value for end. No 
other object models allow this sort of key- 
ing. 

l A constraint should apply to a set, 
not all of the instances of the type in the 
universe. In some models, such as Gem- 
Stone’s, a uniqueness constraint applies to 
all the objects of a type in the universe, not 
just to those in a particular set. The unique- 
ness constraints are actually part of the 
record type and are inherited in subtypes. 
We prefer to look at the constraints for a set 
as a parameterization of the set, not the 
type of the element in the set. 

l You should be able to put different 
constraints on different sets of a particu- 
lar type. In our example, we might want to 
enforce k3 on the set of edges for each 
object, but not enforce the constraint on the 
set of edges connected to a Vertex in- 
stance. The reason for this would be that if, 
as a rule, the software using the types in the 
CAD example inserts edges into the topol- 
ogy relation of an object as soon as they are 
created, there will be no duplicate edges 
(in the sense of k3) for an object. Now, 
when a vertex is instantiated, the edges 
inserted into the edges relation of the ver- 
tex are unique on start and end if they have 

been inserted successfully into the topol- 
ogy relation of the object. There is no need 
for the overhead of keeping the additional 
constraint. 

Expert system 
assistance in computer 
vision 

Predominantly. we design and imple- 
ment a programming language to support 
writing vision applications so we can use 
the language to develop expert system 
tools. In turn, we use those tools to perform 
vision tasks for end users unfamiliar with 
the software configuration of the underly- 
ing system. We envision end users to be 
those who do not assist in the development 
of the software implementing the abstract 
data types used in a particular vision sys- 
tem. 

As we see it, the plight of the end user is 
to extract high-level information from a 
starting set of low-level data that the user 
brings to the system from sensing devices 
(digitizers, for example) or software tools 
(CAD/CAM systems, for example) used in 
the user’s discipline. From this point, he or 
she would like to be able to accomplish 
something without learning a new pro- 
gramming language and then learning 
about all the abstract data types imple- 
mented and their interrelationships. 

Users may possibly want to become 
acquainted with the system and its details, 
but we feel it’s more likely they will not. In 
trying to use the bare system, users may 
encounter one of the following two bar- 
riers: 

(1) Users will know what form of data 
they would like to produce but not the 
needed programming steps (the sequence 
of operations required and the parameters 
for those operations) to produce data in this 
form from the initial data. 

(2) Users will want to perform some 
operation they have heard exists on the 
system but will have data that is not in 
precisely the right form for use. 

For example, as shown in Figure 10, a 
typical user may have a feeling for what the 
various subtypes of type Rectilinear (His- 
togram, Matrix, Contingency-table, and 
Symbolic-image) are and what sorts of 
functions should operate on them. In addi- 
tion, users may know conceptually what a 
Map is. But, they might not know the 
difference between the various subtypes of 
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Figure 10. Some types and operations for a two-dimensional image-segmentation package. These types form a sublattice of 
a larger type lattice. Each operation maps an object of the type connected to it by a dashed arrow to the type connected to 
it by a dotted arrow. A double-headed arrow between a type and a function indicates that the type maintains a reference to 
the function (through a set attribute containing all functions for which that type is a parameter) and that the function 
maintains a reference to the type (through its set of parameters and the parameter types). 

Map (Symbolic-image, Vector-map, and 
Run-length-encoding). 

If this user has an image of interest, he or 
she might want to do the following: 

(1) Segment the image using the mouse, 
and then 

(2) Display the resulting map with out- 
lines around the regions. 

In this case, users would know they want to 
use two operations: Segment-w-mouse, 
and Display-map-as-outline. There are no 
problems in this instance, since the type of 
the result of the first operation is the type of 
the input to the second. 

But, if users want to take the result of the 
segmentation and display it as filled re- 
gions (using Display-map-as-filled-poly- 
gons), they have a problem because Dis- 
play-map-as-filled-polygons requires a 
Symbolic-image as its argument. In this 
case, the shell would be able to find an 
appropriate coercion path to carry out this 
operation. In particular, it would apply the 
operation Coerce to the Vector-map. 

In general, several paths could qualify 
as coercions. Some coercions are complex 
in that they might require additional argu- 
ments since they are not simple “filters” 
that convert from one type to another. If the 
user attempts to use Display-map-as-filled 
polygons, but supplies as an argument an 
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object of type Image instead of Symbolic- 
image, the following multiple coercion 
paths exist: 

(1) First threshold, then display. 
(Thresholding requires additional 
arguments for which the system 
would query the user.) 

(2) First segment with the mouse, then 
coerce to Symbolic-image, then 
display. 

In such cases, user interaction would be re- 
quested to choose the appropriate path. 
The system can give hints as to which paths 
will yield the best performance. 

Implementation 
details 

Ultimately, the questions of whether to 
use single or multiple inheritance, whether 
to implement parameterized classes, and 
whether to create a syntax and semantics 
such as shown previously, affording strict 
typing on parameterized types (sets, se- 
quences, relations, arrays), record types, 
and atomic types, will be very important to 
us. However, in the immediate future, we 
feel that it is much more important to pro- 
vide a general programming language that 

treats persistent and transient general-ob- 
ject graphs in an easy-to-use fashion with 
reasonable performance and main memory 
usage. For now, Common Lisp provides 
enough object-oriented features; all data 
and functions are objects with self-con- 
tained type information, and the structs of 
Common Lisp allow for a form of inheri- 
tance and code reuse. 

We are using the struct type of Common 
Lisp heavily for our implementation of 
records and tuples. Since updates of rec- 
ords can trigger updates of sets and checks 
of set integrity, the implementation of 
records and tuples is not a straightforward 
extension of Common Lisp structs. Persis- 
tent sets with no keys will be implemented 
as persistent hash-tables where the keys 
are the object IDS of the elements in the set. 
Each additional key will be implemented 
as one or more B+ trees where the nodes of 
a tree are treated as persistent objects by 
the storage system. Such trees allow for 
range queries where a hashing approach 
does not. In general, when an object o is 
needed from disk, the objects recursively 
reachable from it are brought in up to a 
user-controllable depth. Stubs are created 
for the objects reachable from o that are 
one level of depth beyond those in main 
memory. When a stub is referred to, a fault 
occurs and the object and other reachable 
objects are read from disk. 
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T hrough this article, we have justi- 
fied the need for a new program- 
ming language and data manage- 

ment system suited to the needs of 
programmers in application domains such 
as computer vision. 

We have shown where existing systems 
fail to provide much needed features and 
where existing systems provide unneeded 
features that will burden a system fully 
loaded with the large data objects and the 
spectrum of operators and types encoun- 
tered in vision applications. Additionally, 
we have shown the need for type construc- 
tors not found in other object-oriented 
systems such as relations and sets. 

Finally, we have concluded that, with 
relatively small extensions to an existing 
language (Common Lisp) that already 
provides many of the facilities we need, we 
can provide the semantics a language needs 
to make development of applications an 
easier task. n 
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