
Knowledge-Based
Computer Vision

Integrated Programming Language and
Data Management System Design

Andrew M. Goodman, Robert M. Haralick, and Linda G. Shapiro

University of Washington

T he languages that come closest to
providing the tools needed for a
comprehensive computer vision

system fall under the category of “object- Vision systems use a

stract data types for vision applications, he
or she should not have to write file utilities
for each new type that might have per-
sistent instances. In defining types and

oriented database languages.” As in the variety of complex data their behaviors, the programmer should
cases of CAD/CAM environments, soft- not have to define a persistent version of
ware engineering environments, and engi- structures to represent the type and a nonpersistent version.
neering database environments, our data is Someone writing an operation should not
too complex to model with traditional their knowledge of the have to worry about whether an argument
relational database management systems. images being processed passed to the-operation is persistent. There
Such systems, as well as systems pro- should be a minimal performance penalty
viding data modeling using semantic or
functional models, use languages specifi-
tally designed for interaction with highly
structured databases. In addition, they
don’t often provide the semantics of a full,
imperative language such as Common
Lisp or C.

and the application
domain. A new

For this reason, we do not mention all
the contrasts between our language/data
management system and those of the rela-
tional, semantic, and functional sort. Most
of the comparisons we make are between
our language and the others with object
orientation and persistence. Ideas for the
data model have come from earlier work
on data models for geographic information
systems.’

programming language
and data management

system approach is
suggested.

for all this.
(2) The programmer must be able to

build and specify behavior for highly con-
netted networks of objects, yet at the same
time have type constructors such as sets,
sequences, arrays, and relations that im-
pose order on these possibly arbitrary
graphs of objects. If someone needs to
implement a threaded tree or a heap, a
unified, full, and imperative syntax should
be available. We do not want two lan-
guages (a database manipulation language
and a procedural language), as is the ap-
proach with relational DBMSs. (1) Persistent data objects (types, op-

erations, and instances of types) should
appear to the programmer no differently
than do transient objects. The only differ-
ence between a persistent and a transient
object of the same type is that the persistent
one continues to exist after the current user
session terminates. If the applications
programmer’s task is to implement ab-

Through a survey of people who have
vision applications, we have found that the
following properties are needed in a
language for programming computer vi-
sion tasks:

(3) With such interconnected data sets,
it becomes too much of a task for the
programmer to keep track of the references
to objects and free their space when no
longer referenced. Garbage collection on
both transient and persistent objects is
necessary. Some systems, such as E2 and
Extra/JZxcess,3 require explicit deletion of

December 1989 OOIS-9162/89/1200-0043$01.00 0 1989 IEEE 43

Offline Online 2D image of object on assembly line
(camera position known)

Create CAD model representation

I
I

I Extract features from processed image
I I to create lowest level of pyramid I

I I I
I

I Create view classes
I I
I I

Build higher levels of pyramid
I
I

I I
I
I

Create relational pyramids I I

I
Create summary pyramids

I Categorize summary pyramids

Determine view class

Index structure

I I
I

Determine pose based on search

I

Pose

Figure 1. An example of a task in automatic pose determination. Boxed text indicates processing steps. Unboxed text indi-
cates the type of the data object produced by the preceding processing steps.

persistent objects. For good reason, there
don’t appear to be any systems that use
reference counting as a collection me-
chanism.

(4) The object-oriented approach to data
modeling and programming can provide
much of the solution to our programming
and data modeling needs. However, we
require a set-and-relation semantics that
supports uniqueness constraints as power-
ful as those in the relational model. No
object-oriented languages to date support
such semantics and programmers encoun-
ter interesting problems when trying to
support them in an object-based system.

domain, want to do computer vision tasks.
This means that an interpreted environ-
ment is vital. However, a compiler is also
needed to reasonably perform expensive
vision tasks. Furthermore, since expert
system shells generally perform symbolic
computation, an underlying language good
for symbolic computation would be help-
ful. Some object-oriented database sys-
tems, such as E and Adaplex,4 only provide
compilation. Gemstone and Orion provide
both compilation and interpretation.

(5) An expert system shell (written in
the language) is needed for those who,
although unfamiliar with the implementa-
tion and interrelationships of the abstract
data types developed for an application

(6) Much of the database integrity sup-
port that industrial-strength object-ori-
ented databases and relational DBMSs
provide is overkill for what we need to do.
For the most part, data objects used by
more than one person are read, not written,
in processing steps. For example, several
users might use the same images to test

algorithms. They only read them. We do
not have the same problems a group work-
ing on a CAD design has, when multiple
users are performing updates to the same
objects. In most cases, when a database of
objects (for example, some images) is
being used by one person and a new user
wants to access the database, the new user
does so at the risk that someone else will
commit a transaction after the new user has
committed his or her own. The situation is
analogous to editing a document in a multi-
user system. If a user wants to insure that
his or her changes are not overwritten, the
user makes his or her own copy of the
database. Thus far, we have not seen the
need for transaction and concurrency sup-
port beyond what Unix (or a comparable
system) provides.

(7) A user should be able to create per-

44 COMPUTER

sistent data objects, copy them, and make
them accessible to other executables on
other machines. Some systems, such as
Gemstone and E, impose the constraint
that there is one large database with each
object in it having a unique ID over all
space and time. This makes it difficult to
share objects between executables using
different databases because the system
views the objects it has created as the only
ones in existence.

(8) There is no good reason to invent a
new programming language to do these
things if one exists that comes close to
providing the necessary semantics. Taxis,5
Excess, and S (a language implementing
persistent objects for statistical use) are
languages designed from the ground up.
Adding minor extensions to the syntax of
an existing language will attract more
programmers and enable us to spend more
time on the semantics specific to persis-
tence, data modeling, and computer vision
and less on garbage collection and com-
piler bugs. For this reason, we have chosen
to extend the implementation (leaving the
syntax intact) of a Common Lisp as a bed
for providing all of the properties men-
tioned above.

In the following sections, we use an
example from automatic pose estimation
to illustrate the necessity for the above
properties in a language system, we indi-
cate where other languages and data man-
agement systems fail to provide these prop-
erties, and we discuss the type constructors
used in our system and features of the
language semantics of our system.

Example of an
application

Pose estimation is the process of deter-
mining the position and orientation of an
object from an image of the object. In
model-based vision, the vision system
works with stored models of the objects it
expects to see. It extracts features such as
line segments, holes, and corners from the
image and creates a data structure repre-
senting the features, their attributes, and
their interrelationships. It then matches the
data structure extracted from the image to
the stored models to

(1) determine the identity of the object
and

(2) find the correspondence between
the features of the image and the fea-

tures of the correct model so the
pose can be determined.

The on-line phase of the system is the
process of extracting features from an
image, constructing the data structure,
performing the matching operation, and
determining the pose. Generally, the on-
line phase has to execute rapidly to meet
the time constraints of the application task.
As vision systems become more and more
automated, many systems also employ an
off-line phase to construct the stored mod-
els from external data and determine the
features that will be used in the matching
process.

Figure 1 shows the complete description
of a pose estimation system. The input to
the off-line phase of the system is a CAD
model of an object that will be coming
down an assembly line. The input to the on-
line phase is an image of the known type of
object. The task is to determine the posi-
tion and orientation of the object relative to
the camera. We can, from this example, see
much of what a programming language
needs to provide to easily support writing
such an application.

In Figure 1, the sequence of operations
on the left-hand side represents the off-line
construction of a set of view classes. The
sequence of operations on the right repre-
sents the on-line pose determination phase.
These sequences closely resemble the
work of Lu and Shapiro.6

The off-line phase can be summarized as
follows: The 3D CAD model that comes
from a geometric modeling system is con-
verted to a vision model, here deemed the
“CAD model.” This representation is
three-dimensional, and the image (and thus
the extracted features used in matching) is
two-dimensional.

To facilitate the matching, the CAD
model is converted into a set of view
classes, each representing one of the topo-
logically distinct views of the object. Each
view class is represented by a relational
pyramid, a hierarchical relational structure
that describes a view class in terms of the
features that will appear in an image of that
class and the relationships among them.
Primitive features appear at level zero.
Level one features represent relationships
among level-zero features. In general,
level-k features represent relationships
among features from levels 0 to k- 1.

Figure 2a is a line drawing of an object,
and Figure 2b shows a simplified rela-
tional pyramid structure describing the
line drawings of that view class. To rapidly
determine the view class of the object in

the image, a second structure, called a
summary pyramid, is constructed from the
relational pyramid. If the relational pyra-
mid has a relation R with c tuples [((N,,t,,),
(N&h (N,gJl,j = 1, cl, where the
Nas are relation names and the tUs are enti-
ties from lower levels, the summary has a
corresponding relation R with a single
tuple ((N,, N,), c). Figure 2c illustrates
the summary pyramid for the relational
pyramid of Figure 2b.

In the on-line phase, the input image is
processed to a point where the features can
be extracted and a relational pyramid can
be built. Next, a summary pyramid is con-
structed from this relational pyramid de-
scribing the features extracted from the
image. At this point, this summary pyra-
mid is compared (via an index structure) to
the summary pyramids of the various view
classes, and one is chosen based on a simi-
larity measure. The correspondences de-
termined from matching the relational
pyramid of the image with the relational
pyramid of the selected view class deter-
mine the pose of the object.

Without knowing more about the opera-
tions on and representation of CAD mod-
els, relational pyramids, summary pyra-
mids, and index structures, we can make
several observations about aspects of this
system that require underlying support
from the implementation language:

(1) Traditional image-processing sys-
tems do not provide enough support in the
way of data types and operations. Note that
a relatively small part of the application is
low-level image processing. Computer
vision systems use data structures that are
far more complex than plain images. At the
same time, structures such as multidimen-
sional images must be easily representable
and manipulatable with the tools provided.
An extension of the core system will pro-
vide structures and operations for low-
level image processing.

(2) Data objects with complex structure
need to exist between applications and
computers. The two dotted boxes (see
Figure 1) represent the on-line and off-line
parts of the application domain. They are
distinct processes. For each index struc-
ture produced by the off-line phase in an
industrial system using the application,
many objects will come down an assembly
line whose poses are unknown and must be
determined by the system. The two pro-
cesses are possibly on the same or different
machines/networks. We see that the on-
line phase uses data objects produced by
the off-line phase. These objects need to

December 1989 4.5

-eve1 2:
junction adjacency

((three-line, J,), (three-line,
JJ t

((three-line, J,), (two-line, JJ)
((three-line, JJ, (two-line, JJ]

,evel 1:
three-line junctions

J, : ((straight, L,), (straight, LJ,
(cum, C,) 1

J, : [(straight, LJ, (straight, LJ,
(curve, C,) 1

two-line junctions
J, : ((straight, L,), (straight, L,)]

Level 0:
Straight curve

Cb)

Level 2:
junction adjacency

((three-line, three-line), 1)
((three-line, two-line), 2 I

Level 1:
three-line junctions

((straight, straight, curve), 2)

two-line junctions
{(straight, straight),

Level 0:
Straight curve

3 1

(cl

1)

Figure 2. An example of the low-level
features of an object (a), the relational
pyramid constructed from it (b), and
the summary pyramid constructed
from the relational pyramid (c).

As shown in Figure 3, the base system is
a set of databases, an interpreter, and a
compiler. The system databases contain
the elementary types and functions. They
also contain various objects used by the
system. Programmers can add databases,

Figure 4 shows basic type constructors.
They can be used to build the types needed
for applications. Below, the word object
refers to an instance of an atomic type, an
array, a relation, a record, a sequence, or a
set. As a description of some entity, the
word object further implies that it can be

46 COMPUTER

persist between processes.
Some persistent object systems, such as

Gemstone,’ use one global database giv-
ing unique identifiers to each object cre-
ated by the system. Two separate instances
of the system cannot share objects, since
both have used the same object identifiers
for different objects. This problem can be
eschewed by making object identifiers so
long (greater than 100 bits) that the identi-
fier can contain a stamp of the executable
that created it and hence guarantee unique-
ness across more machines than will exist
in the next thousand or so years. Gem-
Stone, however, only uses 32 bits for ob-
ject IDS.

(3) There are objects with identical
structure, some persistent and some tran-
sient. In Figure 1, when the pose of the
unknown object is being determined in the
last step of the on-line phase, the system
uses two separate relational pyramid struc-
tures as its input. The first is a relational
pyramid created by the off-line phase,
which must be in permanent storage before
the on-line phase begins. The second,
which is a relational pyramid created ear-
lier in the on-line phase, is not persistent. It
does not exist after the on-line phase fin-
ishes executing.

The issue of whether an object is persis-
tent should not affect the design of types
and the coding of functions. When pro-
grammers write a non-system-level func-
tion, we feel that usually they would like it
to work on actual parameters (arguments)
that are either local to the process or persis-
tent, as long as they are of the right type.

Furthermore, when a programmer de-
signs a new type, he or she should not have
to create two of them that only differ in
whether instances of the type are persis-
tent. Of course, both in writing functions
and creating new types, we might want to
override this feature.

An obvious implication of all of this is
that the programmer should never have to
worry about how to write a type of object to
a file or whether the provided disk repre-
sentation is compact enough.

The system model -
detachable databases

put functions and types in the databases
that they create, and create instances of
these types and put them in the databases.

The idea is that the system is tailorable.
If a cell morphology package exists on the
computer system, a user can access the
database in which it is contained. It is not
a permanent part of the system, as is the
case when new types are added to a Small-
talk or Gemstone system. When a cell
morphology package is added, the pack-
age’s programmer does not start from
scratch. The programmer builds on top of
packages that other users have created. In
this case, the cell morphology package
programmer is probably using functions
and types from an image-segmentation
package. These types would be two-di-
mensional images, contingency tables,
symbolic images, and region relations (sets
of objects where each object contains all
sorts of relevant information about a re-
gion of a symbolic image).

In some other object-oriented lan-
guages, such as Gemstone’s OPAL and E,
each executable (OPAL interpreter session
or E program) is connected at runtime with
one database containing a universe of ob-
jects that all users share. It is difficult to
build a subsystem, such as adatabase, with
only image-processing operations and
types. We prefer to think of each database
as an address space containing objects
referencing either local objects (in the cur-
rent database) or objects in outside data-
bases. In this way, our universe of persis-
tent objects is partitioned into modules
with related objects that can be transferred
between machines and executables with-
out severe problems.

The core system, of course, will be de-
signed with the foresight that many of the
derived systems will be doing matrix
manipulation as well as more symbolic
computation. Traditionally, programming
languages have been designed with syntax,
semantics, and implementations that em-
phasize one of these types of computation
over the other.

Some type
constructors

Core set of databases containing:
Elementary prototype objects
Elementary operation objects for the prototypes
System data objects

Interpreter and compiler
Storage manager

Other databases containing
image prototypes
Image processing operations Cells, nuclei, images, statistics

Other databases containing
----* 2D segmentation prototypes

Other databases containing

Operations on these prototypes
CAD pose determination prototype objects
Operations for these prototypes
CAD models, relational pyramids, summary

pyramids, index structures, images, etc.
Other databases containing

+ 3D representation prototypes
Operations on the prototypes Other databases containing

Prototypes for geographical objects
+ Operations for these prototypes

,, States, cities, rivers, wooded areas, maps, etc.

Other databases containing
Prototypes for 3D reconstruction and display
Operations for these prototypes
Hand digitized serial sections, transformation matrices,

display lists, tubes, ribbons, contours, surface normals, etc.

igure 3. How user environments can be derived from the core system.

referenced from other objects. In contrast,
the word value refers to an entity to which
other objects may not hold references. The
elements of an array, for example, may be
values in some cases. In what follows, we
give informal definitions of the type con-
structors for objects available in the lan-
guage.

l An instance of an array type is a recti-
linear arrangement of either atomic values

l An instance of an atomic type is an
instance of an integer, float, double, char-
acter, or enumerated type. Such an in-
stance is an object and may have multiple
references to it. There is a distinction be-
tween the sort of values sometimes held in
the cells of arrays and fields of records, on
one hand, and instances of atomic types, on
the other hand. Instances of atomic types
are objects and may have references to
them. The elements of arrays and records
may or may not have object identity (de-
pending on the type of array or record).
Their values may only be accessed by
operations on the array or record contain-
ing them (which is an object).

December 1989

Set Sequence Record Relation Array Atomic Symbol

I I

Figure 4. Some type constructors for modeling the highly structured data we find
in applications.

or references to objects. Arrays are a pa-
rameterized type parameterized on the type
of the cell value. Strings and vectors are
instances of array types.

l An instance of a sequence type is like a
one-dimensional array except that inser-

l An instance of a record type is like a
“struct” (a multifield structure) in C. One
can set and retrieve the values of its fields
using the names for its fields. The various
record types form a lattice representing an
is-a relationship (also called a generaliza-
tion hierarchy). Both fields and functional-
ity are inherited through this lattice. The
fields of a record can be atomic or refer-
ences to objects.

tion into and deletion from arbitrary posi-
tions in the sequence are allowed. Se-
quences are a parameterized type in the
same way as arrays.

l An instance of a ser type is an unor-
dered collection of references to unique
objects, where an object is, in general, an
instance of a record type. The elements
referred to by a set may be referenced from
other objects. Sets are a parameterized type
parameterized on the type of the elements
referenced. (The meaning of the expres-
sion “an object is unique within a set” will
be discussed later in this article.)

l An instance of a relation is similar in
some respects to an instance of a set. The

47

Figure 5. Some typical data structures derived from the type constructors.

main difference is that the elements of a
relation do not have identity in the way
records do. It is impossible to change or
retrieve their attribute values without per-
forming an operation on the relation as a
whole. Other objects cannot maintain ref-
erences to the tuples of a relation. Relation
types are parameterized similarly to sets.
One feature of relations that allows some-
what more flexibility than in standard rela-
tional models is that the elements in a
domain of a relation may be object refer-
ences.

l An instance ofa symbol is an entity that
allows the programmer to give a name to
the object bound to the symbol (this object
would be the value of the symbol). Sym-
bols play the role of variables in some
programming languages. The difference is
that, whereas variables in most languages
have a type associated with them, symbols
are untyped. It is the object to which a
symbol is bound that has a type.

Tasks in computer vision often involve
transformations of data that may be gener-
ally in the form of arrays to data that can
take a variety of forms. More array-like
data is often produced in image-processing
steps. At subsequent steps, such as in mid-
and high-level vision, data with more in-
teresting structure is produced.

Figure 5 shows examples of the forms
data can take. A, B, and C are symbols that
refer to objects.

A is a record that has a set-valued field.
The set refers to three records, each refer-
ring to one of the others. A is interesting in
that it shows that, using the type construc-
tors, we can have data that is an arbitrary
graph. At the same time, structure can be
imposed on the graph by using a set, which
would allow, for example, iteration over
the nodes of the graph. Soon, we will pro-
vide an example of an application that
heavily uses data in this form.

48

B represents a record that refers to an
array object. This type of construct might
be, for example, a symbolic image (an
image where each pixel’s value represents
the region to which it belongs). In one
field, the record object would contain in-
formation about the meaning of the symbol
values. Another field might contain infor-
mation regarding the maximum and mini-
mum symbol values. Another field refers
to the array itself.

In contrast to A, where data is nodal and
roughly forms a graph, C represents data
that is hierarchical. It is similar to what has
been called (in database literature) a nested
relation (or NF* relation’). C differs in that
its subrelations have object identity,
whereas an NF’ relation does not have
object identity. It is also possible for the
elements of the tuples of a relation to refer
to objects other than relations.

A, B, and C are fairly typical of the
forms data takes for the vision applications
we have surveyed. In most cases, one or
more symbols point into a connected graph
of objects. We can refer to the connected
graph a symbol refers to as an object graph.
Symbols can be part of an object graph.
The object graph is also often constrained
by the procedures that manipulate it to be a
tree, list, or directed acrylic graph (DAG).
Object graphs are further constrained by a
strict typing system that restricts what an
individual reference (arrows in Figure 5)
may point to. The destination of a refer-
ence is constrained to a specified type and
that type’s subtypes. Since types form a
singly rooted lattice, with root t, a refer-
ence constrained to be of type t is, in fact,
completely unconstrained.

The CAD model

Figure 6 shows the record types for a
world of CAD objects. One of these worlds

contains a single instance of the CAD-
World type, and then multiple record in-
stances of the types Object, Edge, Vertex,
Arc, and Face. In a world of CAD objects,
there are no record instances of the types
Boundary, Surface, lDpiece, and 2Dpiece
because each of these types is used only as
a parameter to a relation object in some
other type. This means there are only tuples
of the above types, and no records.

All of the types except CAD-root-type
are subtypes of CAD-root-type. In keeping
with a standard object-oriented paradigm,
this means that all types contain the fields,
as does CAD-root-type. More specifically,
if we define the type CAD-World as fol-
lows (using a more readable syntax than
Common Lisp)

CAD-World := Type(is-a = CAD-root-
type 1 (

objects: Set(type = Object);
transformation: Function;
points: Array (dimensions = <*,3>,

type = Float);
I

the following function and macros

CAD-World.make := Function(name:
Symbol;

bounding-box: box(dimensions = 3);
objects: Set (type=Object);
transformation: Function;
points: Array (dimensions = <*,3>,

type = Float);)
returns CAD-World

I “’ I

objects := Macro(Arg: CAD-root-
type) returns Set(type = Object)

1 “’ I
transformation := Macro(Arg: CAD-

root-type) returns Function
(“’ I
points := Macro(Arg: CAD-root-type)
returns Array (dimensions = <*,3>,

type = Float)
I “’ t

are automatically created by the system
and can’t be redefined without redefining
the CAD-World type.

If we do the following:

some-CAD-World := CAD World.
make (some-name, some-objects,
some-box, some-transformation,
some-points);

and then want to know the objects in
“some-CAD-World,” we just say

COMPUTER

CAD root-type

Name: Symbol
Type: String
Bounding box: Box(Dimensions = 3)

CAD World (is a CAD root-type) Vertex (is a CAD root-type)

I Objects: Set(type = Object)
Transformation: Function I

Object (is a CAD root-type)

Topology: Set(Type = Edge)
Vertex: Set(Type = Vertex)

Edge (is a CAD root-type)

Start: Vertex
End: Vertex
Arc-left: Arc
Arc-right: Arc
Face-left: Face
Face-right: Face
Angle: Float

Face (is a CAD root-type)

Surfaces: Relation(Type = Surface)
Boundaries: Relation(Type = Boundary)
Transformation: Function

Boundary (is a CAD root-type)

Transformation: Function
Arcs: Set(Type = Arc)

Arc (is a CAD root-type)

Transformation: Function
1 D pieces: Relation(Type = 1 D piece)

Surface (is a CAD root-type)

I 2D pieces: Relation(Type = 2D piece)
Transformation: Function I

1 D piece (is a CAD root-type)

Transformation: Function
Equation: Function

20 piece (is a CAD root-type)

I Transformation: Function
Equation: Function I

Figure 6. The types for a world of CAD objects. Each box contains the names and types of fields for a record type.

objects-in-some-CAD-World:=
objects(some-CAD-World);

When the type CAD-root-type was cre-
ated, the macro bounding-box was defined
as follows:

bounding-box := Macro(arg: CAD-
root-type) returns box(dimensions
= 3)

1 ... I

If we want to know the bounding box for
“some-CAD-World,” we just say

bounding-box-for-some-CAD-World
:= bounding-box(some-CAD-
World);

Since the type of some-CAD-World is a
subtype of CAD-root-type (which is the
required argument type for the function
bounding-box), the call to bounding box is
legal. It is possible that the other type, say
Foo, that is not a subtype of CAD-root-
type will have a field called bounding-box
whose type is, say, Bar. If this happens, the
following function definition will occur:

bounding-box := Macro(arg: Foo)
returns Bar

I ... I

The bounding-box function, as well as
all the other functions described so far, are
generic and hence such a redefinition does
not cause a problem.

Figure 7 shows an example of a function
that performs a specific kind of query on a
CAD-World. Get-adjacent-faces takes as
parameters a CAD-World and a face and
returns all faces adjacent to the face in the
particular CAD-World. The “For” state-
ments allow iteration over the elements of
one or more sets or relations, selecting
those records or tuples that satisfy the
predicate in the “Where”clause (the predi-
cate defaults to logical true if no “Where”
clause is specified). When appropriate
keys exist on the sets over which selection
is being performed, they are used to select
the elements satisfying the predicate. Oth-
erwise, straightforward iteration over all
elements must be used.

We can make several observations about

December 1989 49

Get-adjacent-faces := Function(some-CAD-World: CAD-World; some-face:
Face) {

result: Sequence;
For (i in some-CAD-World.objects) (

For (j in i.topology) (
if @face-left = some-face)

push(j.face-right, result);
else push(j.face-left, result);

) Where (j.face-left = some-face II j.face-right = some-face);
break;

return(result);

Figure 7. An example of a query on an instance of a CAD-World data structure.

I I

Figure 8. The relationships between instances of types in a CAD model. A node
labeled A pointing to a node labeled B with a solid arrow implies that each in-
stance of type A references an instance of type B. A node labeled A pointing to a
node labeled B with a dashed arrow implies that each instance of type A refer-
ences a set or relation of instances of type B. (The difference in dash length
means nothing.) This figure leaves out many of the types in the CAD model.

the code example above:

l Macros. The language supports a
powerful macro facility that the compiler
can exploit to create efficient code. Our
high-level extensions to Common Lisp
will use macros. One of the most useful
features is that macros can be used to de-
fine new functions.

l The “:=” assignment syntaxfor types,
functions, and macros. This syntax in the
example is meant to make it clear that
types, functions, and macros are data ob-
jects themselves and can be persistent or
nonpersistent. The types, functions, and
macros of the Common Lisp kernel are
viewed as a collection of persistent objects
by the system.

l Why extend Common Lisp? Why not
extend CLOS instead? At first glance, it
seems it might be more reasonable to ex-
tend CLOS9 (Common Lisp Object Stan-

50

dard) directly to provide persistence, since
CLOS includes many more object-oriented
features than does Common Lisp. How-
ever, in CLOS, the emphasis is on slot-
based objects. We think of the set, se-
quence, and relation types of our language
as parameterized types. It would be un-
natural to implement these types as slotted
objects, as you would have to do using
CLOS. Another point is that we would like
to use some of the strict typing features of
Common Lisp (such as typed arrays) that
would be somewhat awkward to use in
CLOS. Furthermore, a straightforward
extension of CLOS cannot provide certain
features that we think would eventually be
useful (for example, parameterized types).
Lastly, since we will be providing a su-
perset of Common Lisp, it will be fairly
straightforward to build CLOS on top of
our Common Lisp if there are those who
want to use a CLOS with persistent objects.

l Protection of the underlying represen-
tation of abstract data types. In many lan-
guages, the operations belonging to a class
have access to the class’ instance variables,
whereas nonmember functions do not and
instead have to rely on the interface created
by the member functions. In our model, we
follow the approach to record access that
Common Lisp uses for structure access and
CLOS uses for slotted object access. This
entails that, for any function, all access to
the data contained within an object is
through a functional interface. To create
privacy, the privacy semantics of standard
object-oriented languages in CLOS or
Common Lisp, a type can be created in a
package with the accessors made private to
the package.

Interconnectedness of
object graphs

Each arrow in Figure 8 represents an
attribute of the type at the base of the arrow.
This sort of picture shows up in a lot of
semantic data modeling literature. In the
ER model as discussed in Tsichritzis and
Lochovsky,” each arc would be repre-
sented as a named relationship between
objects of the types at either end of the
arrow. In the functional data model imple-
mented in Daplex,4 each arrow would be a
function with the type at the tail represent-
ing the domain and the object at the head,
the range.

In each case, these data models began as
database designing tools. Often, a query
language was supplied that allowed que-
ries on a database to be embedded in an-
other procedural language. In the Daplex
case, a language was built around the data
model that was more expressive than a
query language, but not as flexible as a
standard procedural or functional lan-
guage.

From the outset, our plan has been to
bring the data modeling tools closer to
what is found in standard programming
languages. Hence, our objects explicitly
reference what they need to. The language
for data modeling should be uniform for
defining the types of both persistent and
transient objects.

As a result, we provide a more complete
semantics for sets than is found in nonper-
sistent languages by allowing the program-
mer to have control over what constitutes
uniqueness of a set’s members. We provide
less constraints than do those languages
exclusively for database programming.

COMPUTER

In normal programming, the data ob-
jects have no constraints (except type
constraints) unless the programmer builds
them into the operations that change these
objects. We take the same approach. The
data model provides a minimum number of
constraints so the difference between pro-
gramming with persistent objects and nor-
mal in-core data structures becomes mini-
mal.

In some ways, this effort resembles that
of Gemstone, since the idea behind Gem-
Stone was to add persistence to Smalltalk.
Gemstone tries to treat persistent objects
the same way as transient ones.

The lack of set
semantics in object-
oriented languages

Figure 9 shows part of an instance of a
CAD model. It illustrates that objects can
often belong to more than one set. In this
case, an instance of an Object type and an
instance of a Vertex type maintain sets of
Edge objects. The instance of type object
maintains its set through the topology at-
tribute. The instance of type Vertex main-
tains its set through the edges attribute.

This sharing of objects does not occur
just between sets. Sharing can occur be-
tween two nonset attribute values or be-
tween a set object and a nonset attribute.
An example of the latter case happens
between Object instances and Edge in-
stances. Object instances contain a set of
instances of type Vertex (representing the
vertices in the object). Edge instances refer
to a vertex for their start and end points.
Often the same vertex will be referenced
both through the set object and through an
attribute of the Edge object.

We can see, then, that to support our
applications, it is important to implement
the abstract data type of a set whose ele-
ments may be referred to from elsewhere.

These set semantics are provided by
object-oriented languages such as Gem-
Stone and Smalltalk. But the languages
providing these semantics fail to provide
other set semantics that are also necessary.
In these languages, a set is a collection of
unique objects where uniqueness has the
following definition: Objects u and b are
unique if they do not have the same object
identifier. This, of course, implies that for
sets of this type, there could be multiple
members with different object IDS but
exactly the same attribute values. We see a

December 1989 51

L

Vertex,

V

Set,
V

Set,

Figure 9. How objects can be members of more
record objects; squares indicate set objects.

than one set. Ellipses indicate

need to support uniqueness constraints
beyond the requirement of unique object
IDS for set members.

Providing such uniqueness constraints
is something relational DBMSs do well.
When we create a set or relation, we would
like to be able to create uniqueness con-
straints similar to the uniqueness con-
straints that exist in relational DBMSs.

Three basic problems come up when
attempting this in an object system such as
ours:

(1) The members of sets and relations
can have fields that are nonatomic. This is
not true in the relational model. As a result,
what it means for a member of a set or
relation to be unique with respect to the
others is necessarily more complicated
than in the relational model.

(2) Since the members of sets (which
are records) are objects, insuring that sets
are not corrupted by updates done through
outside references is a problem. While a
record is a member of a set, it can be
updated through another object that has a
reference to it. If a field guaranteed to be
unique in a set is updated to a nonunique
value, the set is corrupted.

(3) Since we want detachable databases
(as compared with a one-world model such
as Gemstone) in our model, a set possibly
exists in a database not currently linked
that contains a record in a database that is
linked. If a key field of this record is
updated through some outside reference,
the uniqueness constraints of the set could
be corrupted.

Conventional programming lan-
guages do not provide set semantics
either. There are no programming lan-
guages that implement sets of records like
objects in a complete way. The set type
constructor, as we use it, is pervasive in the
example application domains that we have
looked at. Hence, support must be pro-
vided for it at the language level.

If we do not extend the semantics of
some already existing language, or create a
new language that supports set semantics,
programmers who write vision applica-
tions will end up doing it repeatedly as a
procedural interface in each new domain.

Edge example. The set-theoretic defini-
tion of a relation requires a relation to
contain unique n-tuples (where two n-
tuples are unique if they do not have iden-
tical attribute values). For practical pur-
poses, this is a minimal and infrequently
used constraint. In reality, relational data-
base schemas impose stronger constraints
on what may be inserted in a particular set
or relation by specifying that no two tuples
will have the same value on certain fields
or combinations of fields. Each such field,
or combination of fields, is called a key.
When no key is specified, uniqueness is
commonly not enforced on the attributes.
Instead, a system-maintained, globally
unique tuple identifier is used as an im-
plicit additional field and serves as a key.
In general, some sort of index structure is
maintained for each key.

We would like to be able to impose such
constraints on the set and relation types in

our language. For example, we would like
to impose the constraint on the topology
field for the type Object in Figure 6 that no
two edges have the same start and end
point. In particular, we would like a run-
time error to be signaled if an insertion into
the set of edges violates one of these con-
straints or if an instruction is executed that
changes the value of start or end in such a
way that the record is no longer unique
according to the above constraints.

We could define the set of constraints as
follows:

kl := Key(type = edge) (
start,end : UNIQUE

I

Then, the topology field of the Object
type could be changed to

topology: Set(type = Edge, keys = kl);

Before making this change, uniqueness
would have been guaranteed on the object
identifiers of the individual edges over the
topology set. This is less of a constraint
because it is possible that a user could have
instantiated two edge objects with identi-
cal start and end points. If topology had
been declared with the kl constraint, upon
insertion of the second edge record with
identical start and end points, the kl con-
straint would not have been met and the
insertion would not have been allowed.

Perhaps we would like to be even more
specific about what constitutes a unique
edge over the topology set. If we created
another key and used it in the definition of
the topology relation:

k2 := Key(type = edge) (
start.location, end.location

: UNIQUE;
I

we would protect the set against the possi-
bility of there being two edges with differ-
ent object IDS whose start and end points
have different object IDS but the same
value for their location (the same index
into the array of points).

Continuing with the example, if record
types had been defined for R-tree nodes”
and operations written that implemented
insertions and deletions into an R-tree, we
might want to index the topology field on
the bounding boxes of the edges. One
bounding box possibly corresponds to
more than one edge, so we would not spec-
ify such a key as a uniqueness constraint.
Instead, we might say

52

k3 := Key(type = edge) [
startlocation, end.location

: UNIQUE;
bounding-box: NONUNIQUE;

I

Given an object ID of a bounding box.
this would allow us to find all edges for
which it is a bounding box in logarithmic
as opposed to linear time, since a key
would exist mapping the object IDS for
bounding boxes to edge objects.

The full semantics of keying, as dis-
cussed above, is not supported in data
models other than the relational model:

l In other object models, the unique-
ness constraint is on the object ID of
members. Were we to simply put the con-
straint that the object IDS of the edges must
be unique, we could end up with more than
one edge with all the same field values, or
the same start and end points, or the same
left face and right face.

l In other object models, keys on at-
tributes (if allowed) are on single fields.
We would like to be able to key over a
combination of fields. Taking the Edge
type in Figure 6 as the example, we would
like to be able to specify that it is only the
combination of start and end that is re-
quired to be unique over a set. There can be
more than one set member with the same
value for start or the same value for end. No
other object models allow this sort of key-
ing.

l A constraint should apply to a set,
not all of the instances of the type in the
universe. In some models, such as Gem-
Stone’s, a uniqueness constraint applies to
all the objects of a type in the universe, not
just to those in a particular set. The unique-
ness constraints are actually part of the
record type and are inherited in subtypes.
We prefer to look at the constraints for a set
as a parameterization of the set, not the
type of the element in the set.

l You should be able to put different
constraints on different sets of a particu-
lar type. In our example, we might want to
enforce k3 on the set of edges for each
object, but not enforce the constraint on the
set of edges connected to a Vertex in-
stance. The reason for this would be that if,
as a rule, the software using the types in the
CAD example inserts edges into the topol-
ogy relation of an object as soon as they are
created, there will be no duplicate edges
(in the sense of k3) for an object. Now,
when a vertex is instantiated, the edges
inserted into the edges relation of the ver-
tex are unique on start and end if they have

been inserted successfully into the topol-
ogy relation of the object. There is no need
for the overhead of keeping the additional
constraint.

Expert system
assistance in computer
vision

Predominantly. we design and imple-
ment a programming language to support
writing vision applications so we can use
the language to develop expert system
tools. In turn, we use those tools to perform
vision tasks for end users unfamiliar with
the software configuration of the underly-
ing system. We envision end users to be
those who do not assist in the development
of the software implementing the abstract
data types used in a particular vision sys-
tem.

As we see it, the plight of the end user is
to extract high-level information from a
starting set of low-level data that the user
brings to the system from sensing devices
(digitizers, for example) or software tools
(CAD/CAM systems, for example) used in
the user’s discipline. From this point, he or
she would like to be able to accomplish
something without learning a new pro-
gramming language and then learning
about all the abstract data types imple-
mented and their interrelationships.

Users may possibly want to become
acquainted with the system and its details,
but we feel it’s more likely they will not. In
trying to use the bare system, users may
encounter one of the following two bar-
riers:

(1) Users will know what form of data
they would like to produce but not the
needed programming steps (the sequence
of operations required and the parameters
for those operations) to produce data in this
form from the initial data.

(2) Users will want to perform some
operation they have heard exists on the
system but will have data that is not in
precisely the right form for use.

For example, as shown in Figure 10, a
typical user may have a feeling for what the
various subtypes of type Rectilinear (His-
togram, Matrix, Contingency-table, and
Symbolic-image) are and what sorts of
functions should operate on them. In addi-
tion, users may know conceptually what a
Map is. But, they might not know the
difference between the various subtypes of

COMPUTER

IH*isto*SramIIMatrixIIConttableI!*j\m*ageIIl
’ I

. .
: . . . I I

’ I
: . . . :I : II:

I 1
. II.

'I
’ . .

&' 1:. I I : ’

I -mm----- + Histogram * .: I I
* .

'*Coerce <.' + : 1
I I 0

. . .
I . . . ; '

Connect components i !
I
I ‘: ! ’ w Threshold i I .

I .
I ! ! Display map as filled polygons I .
I ’ :
I : ‘* Segmentwithmouse +-------
l v

I Display map as outlines
I
I

* . * Histogram 4 -,
------------------,,--,,---,,,--,f

Figure 10. Some types and operations for a two-dimensional image-segmentation package. These types form a sublattice of
a larger type lattice. Each operation maps an object of the type connected to it by a dashed arrow to the type connected to
it by a dotted arrow. A double-headed arrow between a type and a function indicates that the type maintains a reference to
the function (through a set attribute containing all functions for which that type is a parameter) and that the function
maintains a reference to the type (through its set of parameters and the parameter types).

Map (Symbolic-image, Vector-map, and
Run-length-encoding).

If this user has an image of interest, he or
she might want to do the following:

(1) Segment the image using the mouse,
and then

(2) Display the resulting map with out-
lines around the regions.

In this case, users would know they want to
use two operations: Segment-w-mouse,
and Display-map-as-outline. There are no
problems in this instance, since the type of
the result of the first operation is the type of
the input to the second.

But, if users want to take the result of the
segmentation and display it as filled re-
gions (using Display-map-as-filled-poly-
gons), they have a problem because Dis-
play-map-as-filled-polygons requires a
Symbolic-image as its argument. In this
case, the shell would be able to find an
appropriate coercion path to carry out this
operation. In particular, it would apply the
operation Coerce to the Vector-map.

In general, several paths could qualify
as coercions. Some coercions are complex
in that they might require additional argu-
ments since they are not simple “filters”
that convert from one type to another. If the
user attempts to use Display-map-as-filled
polygons, but supplies as an argument an

December 1989

object of type Image instead of Symbolic-
image, the following multiple coercion
paths exist:

(1) First threshold, then display.
(Thresholding requires additional
arguments for which the system
would query the user.)

(2) First segment with the mouse, then
coerce to Symbolic-image, then
display.

In such cases, user interaction would be re-
quested to choose the appropriate path.
The system can give hints as to which paths
will yield the best performance.

Implementation
details

Ultimately, the questions of whether to
use single or multiple inheritance, whether
to implement parameterized classes, and
whether to create a syntax and semantics
such as shown previously, affording strict
typing on parameterized types (sets, se-
quences, relations, arrays), record types,
and atomic types, will be very important to
us. However, in the immediate future, we
feel that it is much more important to pro-
vide a general programming language that

treats persistent and transient general-ob-
ject graphs in an easy-to-use fashion with
reasonable performance and main memory
usage. For now, Common Lisp provides
enough object-oriented features; all data
and functions are objects with self-con-
tained type information, and the structs of
Common Lisp allow for a form of inheri-
tance and code reuse.

We are using the struct type of Common
Lisp heavily for our implementation of
records and tuples. Since updates of rec-
ords can trigger updates of sets and checks
of set integrity, the implementation of
records and tuples is not a straightforward
extension of Common Lisp structs. Persis-
tent sets with no keys will be implemented
as persistent hash-tables where the keys
are the object IDS of the elements in the set.
Each additional key will be implemented
as one or more B+ trees where the nodes of
a tree are treated as persistent objects by
the storage system. Such trees allow for
range queries where a hashing approach
does not. In general, when an object o is
needed from disk, the objects recursively
reachable from it are brought in up to a
user-controllable depth. Stubs are created
for the objects reachable from o that are
one level of depth beyond those in main
memory. When a stub is referred to, a fault
occurs and the object and other reachable
objects are read from disk.

53

T hrough this article, we have justi-
fied the need for a new program-
ming language and data manage-

ment system suited to the needs of
programmers in application domains such
as computer vision.

We have shown where existing systems
fail to provide much needed features and
where existing systems provide unneeded
features that will burden a system fully
loaded with the large data objects and the
spectrum of operators and types encoun-
tered in vision applications. Additionally,
we have shown the need for type construc-
tors not found in other object-oriented
systems such as relations and sets.

Finally, we have concluded that, with
relatively small extensions to an existing
language (Common Lisp) that already
provides many of the facilities we need, we
can provide the semantics a language needs
to make development of applications an
easier task. n

4. M. Atkinson and O.P.Buneman, “Type and
Persistence in Database Programming Lan-
guages,” ACM Computing Survey, Vol. 19,
No. 2, June 1987, pp. 106-190.

5. J. Mylopoulos and H.K.T. Wang, “Some
Features of the Taxis Data Model,” PIXX.
6th Int’l Conf. Very Large Data Bases, Oct.
1980, CS Press, Los Alamitos, Calif., Order
No. 322, pp. 399.410.

6. H. Lu and L.G. Shapiro, “Model-Based
Vision Using Relational Summaries,”
Proc. SPIE Conf. Applicurions of Artificial
Intelligence, Mar. 1989, pp. 662.675.

7. Programming in OPAL, Servio Logic De-
velopment Corp., Beaverton, Ore., Mar.
1986.

8. P. Dadam et al., “A DBMS Prototype to
Support Extended NF2 Relations: An Inte-
grated View on Flat Tables and
Hierarchies,” Proc. ACM SIGMod, 1986,
pp. 356-364.

9. S.E. Keene, Object-Oriented Programming
in Common Lisp: A Programmer’s Guide to
CLOS, Addison-Wesley, Reading, Mass.,
1988.

10. D.C. Tsichritris and F.H. Lochovsky, Da/a
Models, Prentice Hall, Englewood Cliffs,
N.J.. 1982.

11. N. Roussopoulos and D. Leifker, “Direct
Spatial Search on Pictorial Databases Us-
ing Packed R-Trees,” Proc. ACM SIGMod,
S. Navathe, ed., Oct.1985, pp. 17-32.

Acknowledgments
This research was supported by the National

Science Foundation and DARPA under grant
DMC-87 14809 and via a gift from Texas Instru-
ments.

References
1. L.G. Shapiro and R.M. Haralick, “A Spatial

Data Structure,” &o-Processing, Vol. 1,
1981, pp. 313-317.

2. J.E. Richardson and M.J. Carey, “Persis-
tence in the E Language: Issues and Im-
plementation,” Tech. Report 79 I, Dept. of
Computer Sciences, Univ. of Wisconsin,
Madison, Wis., Sept. 1988.

3. S. Vandenverg, M.J. Carey, and D.J.
Dewitt, “A Data Model and Query Lan-
guage for Exodus,” Dept. of Computer
Sciences tech. report, Univ. of Wisconsin,
Madison, Wis., Dec. 1987.

54

Andrew M. Goodman is a member of the
Intelligent Systems Laboratory at the Univer-
sity of Washington and a graduate student in the
university’s Department of Computer Science.
His technical interests include programming
languages, programming environments, data-
base systems, and medical applications for
computers.

Goodman received his BA in computer sci-
ence from Cornell University with distinction
in 1985.

Robert M. Haralick is the Boeing Clairmont
Egtvedt Professor in Electrical Engineering at
the University of Washington. His recent work
is in shape analysis and extraction using the
techniques of mathematical morphology, ro-
bust pose estimation, and techniques for mak-
ing geometric inference from perspective pro-
jection information.

Haralick received a BA in mathematics in
1964, a BS in electrical engineering in 1966, an
MS in electrical engineering in 1967, and his
PhD in 1969, all from the University of Kansas.
He is an IEEE fellow, a member of the IEEE
Computer Society, serves on the Editorial
Board of IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, and is the com-
puter vision area editor for Communications of
rhe ACM and an associate editor for Computer
Vision, Graphics, and Image Processing and
Pattern Recognition.

Linda G. Shapiro is a professor of electrical
engineering and adjunct professor of computer
science and engineering at the University of
Washington. Her research interests include
computer vision, artificial intelligence, pattern
recognition, robotics, and spatial database sys-
tems.

Shapiro received a BS in mathematics from
the University of Illinois, Urbana-Champaign,
in 1970, and MS and PhD degrees in computer
science from the University of Iowa, Iowa City,
in 1972 and 1974, respectively. She is a senior
member of the IEEE, a member of the IEEE
Computer Society, the ACM, the Pattern Rec-
ognition Society, and the American Associa-
tion for Artificial Intelligence, and is editor of
Computer Vision, Graphics, and Image Proc-
essing and an editorial board member for Pat-
tern Recognition. She was co-program chair of
the IEEE Computer Vision Workshop in 1982,
general chair of the IEEE Computer Vision
Workshop in 1985, and general chair of the
IEEE Conference on Computer Vision and
Pattern Recognition in 1986.

The authors can be contacted at the Intelligent Systems Laboratory, Dept. of Electrical
Engineering, FT-10, University of Washington, Seattle, WA 98195.

COMPUTER

