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Two-view motion analysis: a unified algorithm
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We present a linear algorithm for determining the three-dimensional rotation and translation of a rigid object from
two time-sequential perspective views using point correspondences. The algorithm is different from existing ones
in two respects. First, various measures for combating noise are incorporated. Second, the algorithm is unified in
the sense that, assuming that the surface assumption holds, it can handle both the case of nonzero translation and
the case of zero translation.

1. INTRODUCTION

Determining the relative motion between an observer and
his environment is a major problem in computer vision. Its
applications include mobile robot navigation and the moni-
toring of dynamic industrial processes. Motion estimation
also has many applications in image processing. For exam-
ple, in efficient coding using digital pulse code modulation in
time, motion estimation and compensation can potentially
improve the compression significantly. In reducing noise in
image sequences by temporal filtering, registration of the
object of interest from frame to frame is necessary to avoid
blurring, and registration is, in essence, equivalent to motion
estimation. The reader is referred to Refs. 1 and 2 for some
of these applications.

In this paper we present an approach to the determination
of three-dimensional motion of a single isolated rigid body
from two time-sequential perspective views (image frames).

A. Statement of the Problem
The basic geometry of the problem is sketched in Fig. 1.
The object-space coordinates are denoted by lowercase let-
ters and the image-space coordinates by uppercase letters.
Let the two views be taken at r, and T2, respectively, and T <
T2. The coordinates at T2 are primed, whereas the coordi-
nates at Tr are unprimed. Specifically, consider a particular
physical point on the surface of a rigid body in the scene.
Let

(x, y, z) = object-space coordinates of the point at time r1,

(x', y' z') = object-space coordinates of the point at
time T2,

(X, Y) = image-space coordinates of the point at time r1 ,

(X', Y') = image-space coordinates of the point at time r2.

It is well known in kinematics that

(x', y', z')t = R0(x, y, z)t + T0, (1)

where R, is a 3 X 3 orthonormal matrix of the first kind, i.e.,

RtR0 = RXJot = I3(I3 - 3 X 3 identity matrix) and det(R0) =
1, To = (t0 1, t 2, to3)t is a 3 X 1 vector (column matrix), and t
represents the matrix transposition operation.

Our problem is the following:

Given two images frames at ri and T2,
Find the motion parameters To (to within a scale factor)

and Ro.

As we shall see later, the equations relating the motion pa-
rameters to the image-point coordinates inevitably involve
the ranges (z coordinates) of the object points. Therefore,
in determining the motion parameters, we also determine
the ranges of the observed objects points. It will be seen
that the translation vector To and the object-point ranges
can be determined to within a global positive scale factor.
The value of this scale factor could be found if we should
know the magnitude of To or the absolute range of any
observed object point.

B. A Two-Stage Approach to Solving the Problem
We present a two-stage method to solve the problem posed
in Subsection .A. In the first stage, we find point corre-
spondences in the two perspective views (images). By a
point correspondence, we mean a pair of image coordinates
(Xi, Y), (X'i, Y'i) that are images at r1 and T2, respectively, of
the same physical point on the object. Then, in the second
stage, we determine the motion parameters from these im-
age coordinates by solving a set of equations. This paper
deals with the second stage. However, a few comments on
the first stage are in order here.

In order to be able to find point correspondences, we must
have images that contain points that are distinctive in some
sense. For example, images of man-made objects often con-
tain sharp corners that are relatively easy to extract. 3 More
generally, image points at which the local gray-level varia-
tions (defined in some way) are maximum can be used.4

In any case, we first extract in each of the two images a
large number of points that are distinctive. Then we try to
match the two point patterns in the two images by using
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Fig. 1. Basic geometry of the problem.

spatial structures of the patterns.5 The matching will be
successful only if the amount of rotation (0) is relatively
small (so that the perspective distortion is small). For ex-
ample, in Ref. 5 good matching results were obtained when 0
< 5 deg. This restriction may be relaxed if we have some a
priori information about the object.6

C. Motion Equations
From the geometry of Fig. 1 and using Eq. (1), we can derive
an equation relating the motion parameters to the coordi-
nates of a corresponding image-point pair. Unfortunately,
this equation is nonlinear.7 8 Iterative techniques for solv-
ing nonlinear equations can hardly be expected to converge
to the correct solution unless a very good initial guess of the
solution is available. Fortunately, by defining appropriate
intermediate unknowns, it is possible to put the motion
equation into a linear form. However, after these interme-
diate unknowns are solved for, we have to determine from
them the motion parameters. This last step is by no means
easy. But at least four algorithms have been proposed for
carrying it out (see Refs. 9-13). Longuet-HigginsI4 has also
derived a condition under which the linear algorithm will
fail.

In the first three algorithms, a tacit assumption is made
that the translation T. is not zero. They cannot handle the
case T, = 0. In this paper, we shall describe an algorithm
that works whether T, is nonzero or not.

D. Outline of the Paper
The structure of the paper is as follows. In Section 2, the
linear motion equation is derived, and a necessary and suffi-
cient condition is given for its degeneracy. Assuming non-
degeneracy, a solution to the linear motion equations is giv-
en. At this stage, we have determined the intermediate
unknowns. Then, in Section 3, an algorithm is presented for
finding the motion parameters from these intermediate vari-

ables. There are four candidate solutions. In Section 4, a
method is described for using the image-point correspon-
dences to pick out the unique correct solution from the four
candidates. Finally, in Section 5, the entire algorithm is
summarized.

y Our algorithm is different from existing ones. It is proba-
bly closest in spirit to the ones given by Zhuang and Hara-
lick' 3 and Yen and Huang.12 The new contributions are
twofold. First, the algorithm is unified in the sense that it
can handle both the case of To P 0 and the case of To = 0.
Second, various measures are taken to combat the effect of

Y noise in image coordinates.

2. TWO-VIEW MOTION EQUATION:
GENERAL SOLUTION AND SURFACE
ASSUMPTION

A. Derivation of Motion Equation
Referring to Fig. 1, we assume that a rigid body is in motion
in the half-space z <0. Take a particular point on the object
whose three-dimensional (3-D) spatial coordinates before
and after motion are (x, y, z) and (x', y', z), respectively.
Let (X, Y) [(X', Y')] be its central projective coordinates
before (after) motion onto the image plane, z = 1, with the
projective center at the origin 0. The following projective
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sponding two-dimensional projective coordinates:

X = x/z, Y = y/z
1XI = x'/z', Y' = y'/z'

(2)

Recall that the 3-D coordinates of a point before and after
the motion are related by Eq. (1). Taking any vector T that
is collinear with T, and taking its cross product with both
sides of Eq. (1), we obtain

ZI
- TX (, YI, B = T X [RJX, Y, iY]
z (3)

and, after taking dot product of both sides of Eq. (3) with
(X', Y', 1),

(X', Y', 1)(T X R0 )(X, Y, )t = 0, (4)

where T X Ro , [T X rl, T X r2, T X r3]; rl, r2, r3 being the
columns of R. Let E- T X Ro Then Eq. (4) states that,
for any image-point correspondence pair [(X, Y), (X', Y')],
the 3 X 3 matrix E satisfies the following equation that is
linear and homogeneous in the elements of E:

(X', Y', 1)E(X, Y, )t = 0. (5)

Denote the set of all observed image-point correspondence
pairs (Xi, Yi) - (X'i, Y'i), i = 1, 2, . . , N, by P. Let

A = /X'y, I, I~l /~l .- 1iyi
X'NXN X'NYN X'N YNXN, YNYN YN' XN, YN 1

[h h2 h31
E= h4 h5 h6 ,

h7 h8 h9

h = (hl, . . , hg)t. (6)

Then it can be easily seen that the linear equations with [(X,
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Y), (X', Y')] e P are equivalent to the following matrix linear
equation for h:

Ah = . (7)

Both Eqs. (5) and (7) will be called the two-view motion
equations. Our approach is first to solve for the intermedi-
ate unknowns hi and then to obtain the motion parameters
from them. Since any T X R0 with T X To = 0 satisfies both
Eqs. (5) and (7) (the latter if T X R0 is rearranged as h) and,
moreover, since such a vector T that is collinear with To has
one degree of freedom when To 0 0 and three degrees of
freedom when To = 0, the general solution of the two-view
motion equation therefore has at least one degree of freedom
when To # 0 and three degrees of freedom when To = 0. In
other words, the coefficient matrix A in Eq. (7) has a rank no
larger than 8 when To is 0 and no larger than 6 when To = 0.
If the rank of A equals 8, then the translation To must be
nonzero, and the general solution must have one degree of
freedom and hence coincides with a(T, X R0), where e is any
real number. If the rank equals 6 and the translation T is
zero, then the general solution must have three degrees of
freedom and hence coincides with To x R0, where T is any
real vector.

B. Degeneracy and Surface Assumption

Definition
The two-view motion equation is called degenerate if the
rank of A is less than 8 when To • 0 or less than 6 when To =
0. Thus, when the two-view motion equation is not degener-
ate, any nonzero solution E can be decomposed into T X R0
with T X T = 0. It is apparent that the degeneracy is
equivalent to having a nonzero solution E such that E is not
equal to T X R0 for any T with T X To = 0.

However, we have the following.

Lemma
A matrix E is equal to T x R0 with T X To = 0 if and only if
ROtE + ERO = 0 and TotE = 0. (Proof of this lemma is given
in Appendix A.)

From this lemma it is clear that the two-view motion
equation is degenerate if and only if there is a nonzero
solution E such that

IIRQ1E + EtRII + I|TtE|J d 0. (8)

Since the rigid-body motion happens in the half-space (z <
0), Eq. (5) is, as is easily seen, equivalent to

(x', y', z')E(x, y, z)t = Q, (9)

or, after substituting [R0(x, y, z)t + T.] for (x', y', z') in Eq.
(9),

(x, y, z)(RtE)(x, y z)t + T tE)(x, y, z)t = 0. (10)

As a result, the two-view motion equation becomes degener-
ate if and only if Eq. (10) has a nonzero solution E such that
inequality (8) holds when each (x, y, z) in Eq. (10) comes
from a group of surface points, 8, which is visible before and
after motion and produces the set of image-point correspon-
dence pairs, P. Letting U = ROtE, then Eq. (10) for E is
equivalent to the following equation for U:

(x, y, z)U(x, y z)t + TtR0U)(x, y z)t = 0. ( 1)

Thus we obtain the following theorems.

Theorem I
The two-view motion equation is not degenerate if and only
if the surface assumption holds, that is, one cannot find a 3 X
3 matrix U such that the group of surface points S are
contained in the following quadratic surface:

(x, y, z)U(x, y, z)t + (TotR, U)(x, y, z)t = 0, (12)

with IIU+ Uti! + TOtROUII # 0.

Theorem 2
Under the surface assumption, the two-view motion equa-
tion has a rank 8 and a general solution aT x R0 (where a is
any real number) when T. # 0 or a rank 6 and a general
solution T X R (where T is any real vector) when To = 0.

Because of theorem 2, at least six or eight image-point
correspondence pairs are needed to ensure the surface as-
sumption, depending on whether the translation T, is zero or
not. In practice, more pairs are preferable to increase the
probability that the surface assumption will be satisfied and
to smooth out noise effects. We would like to point out that
our surface assumption is equivalent to the condition of
Longuet-Higgins14 when To #s 0. His condition does not
include the case To = 0.

The surface assumption, as stated in theorem 1, has the
following interpretation. To simplify the interpretation, we
assume that the object is stationary and that the camera is
moving. Let the origin of the cameras system be 0 and 0',
respectively, before and after the motion. Then, for T, id 0,
the surface assumption holds if and only if the 3-D points
corresponding to P do not lie on a quadratic surface passing
through 0 and 0'. For T, = 0 (then 0 and 0' coincide), the
surface assumption holds if and only if the 3-D points corre-
sponding to P do not lie on a cone with its apex at 0.

C. Solving the Motion Equations
Now we come to the question of computing E or h. There
are a number of possibilities. We propose the following
procedure. From eight or more point correspondences (Xi,
Yi) - (X';, Y'i), i = 1, 2 . . , N (N > 8), we form the positive
semidefinite and symmetrical matrix W = AtA, where A is
given by Eq. (6). Then we find h to minimize htWh under
the constraint IlhI = 1. The solution is the eigenvector of W
associated with the smallest eigenvalue. The motivation for
this method is as follows. In the absence of noise, we have

Ah = 0. (7)

When noise is present in the image-point coordinates, Eq.
(7) is no longer valid. A reasonable thing to do is to find a
least-squares solution, i.e., to minimize

IIAhI = (AhA)(Ah) = htAtAh = htWh.

Assume that the surface assumption holds. Then, if To #
0, the rank of W is 8 in the absence of noise. One and only
one eigenvalue of W will be zero, and the corresponding
eigenvector gives us the exact solution. In the presence of
noise (which is assumed to be small), the smallest eigenvalue
will be almost zero, and the corresponding eigenvector gives
us a least-squares solution. When To = 0, the rank of W is 6
in the absence of noise. Three eigenvalues will be zero, and
the corresponding eigenvector (after normalization to unit
magnitude) will have two degrees of freedom. In the pres-
ence of (small) noise, three of the eigenvalues of W will be
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almost zero. A linear combination of the three correspond-
ing eigenvectors is our least-squares solution.

In any real problem, the probability that the surface as-
sumption is violated is extremely low. In the remainder of
this paper we shall assume that the surface assumption is
always valid.

3. DECOMPOSING E

Under the surface assumption, any nonzero solution E of the
two-view motion equation has a decomposition T X R0 with
T x To = 0. In Ref 11 it is proved that, if a nonzero matrix E
has a decomposition T X R, with R being an orthonormal
matrix of the first kind, E will admit one and only one
alternative decomposition (-T) X R', with R' being an or-
thonormal matrix of the first kind. Thus the surface as-
sumption ensures that any nonzero solution E of the two-
view motion equation admits two and only two decomposi-
tions:

E=TXR = (-T) XR', (13)

where either or ' equals B0 and T X T = 0. In what
follows we derive a procedure to decompose E. In this
procedure, measures are taken to combat the effect of noise.

A. Determining Translation
Let

T = (t1, t2 , t3 )t

where, as is easily seen, Eqs. (18) are equivalent to Eqs. (22)-
(24):

IIE2II2 + IIE3II 2
- IE1112 = 2t1

2 ,

IIE3112 + IE1 12 - IIE2!12 = 2t22,

!E1 1!2 + IE211 2
- IIE3I1 2 = 2t3.

(22)

(23)

(24)

From noise considerations, we recommend a scheme to com-
pute IT as follows:

Step 1. If Itd1 > It2l, It3I in Eqs. (22)-(24), then IT are
determined by using Eqs. (22), (19), and (21).
Stop.

Step 2. If It2! > It3! in Eqs. (23) and (24), then IT are
determined by using Eqs. (23), (19), and (20).
Stop.

Step 3. IT are determined by using Eqs. (24), (20), and
(21). Stop.

B. Determining Rotation
Once T are determined, R and R' could be computed by
means of Eqs. (15)-(17) and (15')-(17'). In fact, a simple
manipulation leads to

El X E2 = t3 (t1R + t2R2 + t3R3),

E2 X E3 = tj(t 1Rj + t2R2 + t3R3),
E3 X El = t2 (t1R, + t2R2 + t 3R3),

(14)

where Rs, 11%, Fi are all 1 x a row matrices.
see, by means of Eq. (13), that

1 = t2 3 -R=R2

=3-t 2 ' 3 + t3 '

E2 = t3B1 -t

= -t3 B'1 + t1B 3,

E3 = t1B2 - t2 ]R

= -t1 R'2 + t2R1.

Phen it is easy to

(15)

(151

(E1 x E2) x E3 = t(tl 2 + t2
2)R3 - t3 (tR + t 2R2)],

(E2 X E3) x El = t(t 2
2 + t3

2)R - tl(t 2R2 + t 3R3)J,

(E3 x E1) x E2 = t2[(t3
2 + t1

2)R2 - t2(t3 R3 + tR)],

(26)

and hence

tjjjTI 2RI = (E2 X E X El + tE 2 X E3),

t2 IIT 11 R = (E3 X E1) X E2 + t 2(E3 X E),

t3jjT112R3 = (E X E2) X E3 + Y3E X Ed),

- which, combined with Eqs. (15)-(17), determine R.
(16) instance, when It1 > It2 l, It3!, we use Eqs. (27), (17), and

to compute R1, R2, and R3, respectively, and so on.
(16') Similarly, we could obtain

(17)

(17')

Thus T can be determined up to a sign by solving the follow-
ing equations:

I|E 112 = t2
2 + t3

2,

IIE2112 = t3
2 + t 2,,

11E32 = t1
2 + t3

2 , (18)

(E1 , E2) = t1 t2 , (19)

(E2, E3) = t2t3, (20)

(E3, El) = t3tl

[(E, Ej) denotes the dot product of E and Ej], (21)

-t 1 IITI 2R'j = (E2 X E3) x El-t(E 2 X E3 ),

-t2Tj2R'1 = (E3 X E1 ) X E2-t 2 (E3 X E1 ),

-t3 ITII 2 R'3 = (E1 X E2) X E3 - t3 (E X E2),

(27)

(28)

(29)

For
(16)

(27')

(28')

(29')

which, combined with Eqs. (15')-(17'), determine R'.
Thus we have outlined a direct procedure to compute T, R,

R' from E. In the next section we discuss how to determine
the true rotation, the true translation direction, and the
relative ranges of observed points from T, R, R'. Here we
would like to point out what happens with the decomposi-
tions when noise is present in the measurements of image-
point coordinates. In general, an erroneous nonzero solu-
tion E does not admit any decompositions, as in Eq. (13).
However, by using the above procedure, we still can compute
a vector T and two matrices R and R'. The triplet (T, R, R')
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should approach the true triplet (T, R, R') when the noise
tends to zero. In other words, (T, R, ') should be closer to
(T, R, R') when the noise becomes smaller. The two matri-
ces .? and V' might not be orthonormal matrices of the first
kind. However, algorithms exist for constructing two ortho-
normal matrices of the first kind, R and R', which are ap-
proximations of P and R' (and hence R and R'), respectively;
see, for example, Arun et al.1

5

4. DETERMINING THREE-DIMENSIONAL
MOTION PARAMETERS AND SURFACE
STRUCTURE FROM T, R

A. Determining Rotation and Translation Direction
Under the surface assumption, any nonzero solution E ad-
mits two and only two decompositions, as in Eq. (13). The
next task is to determine the true rotation from R and R', the
true translation direction from bT, and also the relative
depths z/1T1l and zT 0Nl when T. •- 0. What we really
need is a criterion function L (, ), where the first argument is
a 3 X 1 vector and the second a 3 x 3 matrix such that L(T, R)
equals zero if and only if R equals R and T has the same
direction as T, Note that a zero vector has an indefinite
direction; in other words, it has the same direction as any
other vector. Thus such a function L should satisfy the
following conditions:

JL(T, R) = 0, L(-T, R) 0, L(±T, R') s 0
ifR = R T z 0, and T/iIT[[ = T/IT1 ;

JL(+T, R) = 0, L(±T, R') • 0
ifR=R 0 , T=O

Denoting the left-hand side of Eq. (37) by H(v, v', T, R), we
conclude that for each pair (v, v') e P the function H(v, v', T,
R) equals zero whenever R equals R and T = aT0, a > 0
(assuming that To sd 0). If To = 0, then both H(v, v', T, R)
and H(v, v', -T, R) equal zero whenever R equals R, since in
this case v' has the same direction as Rv and hence v' X Rv =
0 and iT X Rvilv' = IT X v'DIRv. Thus, letting

L(T,R) = I IIH(v,v',T,R)1(I/vl * IIIv'i * ITII) (38)
(v,v')eP

we have proved that L(T, R) = 0 whenever R equals R and T
has the same direction as T,. In what follows we verify that
the function L(T, R) is just what we want. For this, the only
thing that we need to verify is

fL(-T, R) > 0, L(+T, R') > 0
if B = R0, To s- 0, and T0 /11T = T/IITI (39)

and

{L(+T, R') > 0
ifR=R(, T=0 (40)

We would like to point out that the main purpose of the
normalization and summation in Eq. (38) is to smooth out
noise effects.

To provide expressions (39) and (40), we need to derive an
explicit relation between R and R'. From Eqs. (15)-(17) it
follows that

(30) t3(R2 + R'2 ) = t2(R3 + R'3),

t1 (R3 + R'3 ) = t3(R1 + R 1),

t2(R1 + R'1 ) = t(R 2 + R'2),
(31)

To see how we should design such a criterion function, we
return to the source information, the 3-D rigid-body motion
equation (1). Suppose that R equals Ro and T has the same
direction as To. If T0 $z 0, then there must be a constant e>
0 such that T = aT,. Thus it follows from Eqs. (1) and (2)
that

az'(X', y, j)t = azR(X, Y, 1)t + T;

hence

az'(X', y, j) X [R(X, Y, 1)t] = T X [R(X, Y, )t,

az(X', y', )t X [R(X, Y, )t = T X (X', Y', )t.

For abbreviation, we let

v = (X, Y, 1 )t,

V = (X', Y', )t.

(32)

and hence

R + R' = T(RI + R'1)/tj

(41)

(42)

(43)

when t # 0, (44)

(45)

(46)

= T(R2 + R'2)/t2 when t2 0,

= T(R3 + R'3)/t3 when t3 0.

In any case, there exists a row vector q such that

R + ' = T q. (47)

Also, we need the following simple fact: Except for at most
(33) one pair (v, v') in P, the following inequalities hold:

T X v' o 0,

T X Rv 0.
(34)

Since a > 0, z < 0, z' < 0, from Eqs. (33) we obtain

aez'llvx RvEi = -ItT X Rvll,
azllv' X Rvi = -liT x v'ii. (35)

Then, multiplying both sides of Eq. (32) by iv' X Rvi, and
substituting -liT X Rvil for az'llv' X RvlI and -IIT X vli for
azIIv' x Rvil because of Eqs. (35), we have

-liT X Rviiv' = -T X v'iiRv + liv' X RviIT, (36)

or, after rearrangement,

liT X Rvilv'-liT X v'|lRv + liv' X Rv|T = O. (37)

(48)

(49)

In fact, it is obvious that, except for at most one pair, in-
equality (48) holds. Then, when T 0, expressions (35)
and (48) imply inequality (49); and when T. = 0, the nonzero
vector Rv has the same direction as v' and hence inequality
(48) also implies inequality (49).

Now we are ready to prove expressions (39) and (40). We
need to prove that L(±T, R') > 0, in general, and L(-T, R) >
0 when T, # 0.

L(±T, R') > 0: We need only to prove that, for a pair (v,
v') that satisfies inequalities (48) and (49), the function H(v,
v', ±jT, B') is not equal to zero. As a matter of fact, an even
stronger result exists: For ay positive numbers, X' and X,
the following inequality holds:
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X'v' - XR'v ± v' X R'vilT # 0. (50)

Using relation (47) and the motion equation (1), we could
rewrite X'v' - XR'v as

v' - XR'v = Xv' - X(-R + T q)v

= X'v' + XRv - XT(qv)

= M'v' +- (z'v' - T) - XT(qv)
z

= XAZ +-) v'--To-X(qv)T. (51)

Thus the left-hand side of inequality (50) consists of two
terms

(X' + AZ) v' (52)

and

-X To - X(qv)T ± i|v' X R'v[IT. (53)

The coefficient of v' in the first term (52) is positive. The
second term (53) is collinear with T. And the two vectors, v'
and T, are not collinear with each other because of inequality
(48). Thus their sum, the left-hand side of inequality (50),
cannot be zero. This completes the proof of L(±T, R') > 0.

L(-T, R) > 0 when T, # 0: This is simple since, except
for at most one pair (v, v'), v' X Rv does not equal zero when
T, i 0 because of expressions (35) and (48), and hence H(v,
v', -T, R) cannot be zero:

H(v, v', -T, R) = H(v, v', T, R) - 2v' X RvIT
= -211v' X RvjjT Fs 0.

So, finally, we have proved the theorem given below.

Q.E.D. Theorems 3 and 4 indicate that the rotation, the
translation direction, and the relative depth map can all be
determined under the surface assumption without knowing
the mode of the motion, i.e., irrespective of whether the
translation is zero.

C. Noise Effects
For convenience, we could modify theorem 3 as follows: R
equals R0 and T has the same direction as To if and only if

min[L(T, R), L(-T, R)] < min[L(T, R'), L(-T, R')], (56)

L(T, R) < L-T, R), (57)

where relation (56) is used to determine the true rotation
and after that relation (57) is used to determine the true
translation direction. The equal sign in relation (57) is
possible only when T, = 0.

When noise appears in the measurements, the triplet (T,
, R') cannot be accurately computed. However, if the noise

is small, the computed triplet (T, R, R') will be close to (T, R,
R'), and, as is easily seen, L(eT, R) and L(±T, R') will also be
close to L(±T, R) and L(±T, R'), respectively. Therefore
relation (56) will imply that

minjL(T, R), L(-T, R)] < min[L(T, R'), L(-T, B')],

(56')

and relation (57) when To $ 0 will imply that

L(T, R) < L(-T, R).

As a result, relation (56') and the following relation (57')
should give correct approximations of the rotation and the
translation direction:

L(T, A) < L(-T, R). (57')

Theorem 3
Assume that the surface assumption holds and that E (= T X
R = (-T) X R') is a nonzero solution of the two-view motion
equation. Then R = R0 and T has the same directions as To
if and only if

L(T, R) = 0. (54)

B. Determining Relative Depths
Now it is easy to prove the following.

Theorem 4
Assume that R equals Ro and T has the same direction as Toe
Then, when T,, 0, the relative depths are given by

z/[DTjII = IT X v'II
11T - lv' X R,,v II

z -ITl JIT X R,vjj 55
z~uT,,ii - 1TJ - Djv'X R<,,vjI

Proof. From the assumptions, Eqs. (35) (with a = [1T||/
IIToll) hold. Thus Eqs. (55) immediately follow, where the
minuses are due to z < 0, z' < 0.

It is easy to argue that, except at most one point corre-
spondence pair, T X v' is nonzero. Thus, except at most one
pair, v' x Rov is nonzero by Eqs. (35). This indicates that
the division in Eqs. (55) is no trouble.

5. SUMMARY OF THE ALGORITHM

Now we are ready to give the following unified algorithm
that does not require the mode of motion to be known.

Step 1
Find h to minimize htWh under the constraint IIhII = 1. (If
the solution is not unique, pick any solution.)

Step 2
Let

E = (hl, h2, h3),

E2 = (h4 , h5 , h6),

[E]l
E3 = E2 .

_E3_

Step 3

a = (IIE2 112 + IIE3 112 - E1 ||2)/2,

b = (E 3112 + E1 12 -| DE2 112)/2,

c = (IE 1Il2 + IIE2 112 - E3 t12)/2.
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Step 4
If (a > b c) then let

-tl 
T = B2 = -(El, E2)/ ]

_t3_ L-(El, E3)1/W

R1 = [(E2 X E3) X E1 + t(E 2 X E3)I/(tl|T12 ),

R = [(E 2 X E) X E1 - t1 (E2 X E3]/(-t|1|T~t 2),

R2 = (E3 + t2R1)t1 ,

R'2 = (E3 -t2R'1)(-tl),

R3 = (-E 2 + t3R1)tl,

R'3 = (-E 2 -t3R'1)1(-t)

and GO TO Step 7.

Step 5
If (b k c), then let

[t1 1 [-(E 2, E)/

T = t2 = Jb E

_t3_ - (E E)lb

R2 = [(E3 X E1 ) X E2 + t2(E3 X E1 )]/(t2 llTW 1),

R'2= [(E3 X E1 ) X E2 - t2(E3 X E1 )]/(-t2IIT 12),

R3 = (E + t3 R2 )/t2 ,

R3= (E1 -t3R'2)/(-t2),

R = (-E 3 + tR 2)/t2 ,

R'1 = (-E 3 -R'2)/(-t2)

and GO TO Step 7.

.'top 6
Let

tl -(ES, Et)Arc

T = t2 =-(E3, EW ,

_t3_ NLE

R3 = (E X E2) X E3 + t3(E X E2)]/(t 3llT|l2),

R' 3 = [(E1 X E2) X E3 - t3(E X E2)I/(-t 3 llTI12),

R1 = (E2 + tR 3 )/t 3 ,

R'1 = (E2 -tR'3)/(-t3),

R2 = (-E 1 + t2R3)/t3 ,

R'2 = (-E 1 - t2R'3)/(-t 3 ).

Step 7
Let

R,1

R = R2 1'

LR

R'= '2.

Step 8
If

min[L(T, R), L(-T, R)] < min[L(T, R'), L(-T, R')],

then

R0 = R.

Otherwise

R,= R'.

Step 9
If

L(T, R) < L(-T. R),

then To has the same direction as T. Otherwise, To has the
same direction as (-T).

Step 10
When T 0 0, the relative depths are given by

z - JTxv'jj z' - |TxRovL
IIT ,11 IITII - llv'xR,,vll |IT 11j ITII |IY/vxR0VII

Step 11.
STOP.

Simulation 1

1[/ 1/12 0

To = (0, 0,.)t, Ro= -1/_ 1/V2 0
L 0 1

Six points in image plane z = 1 before motion:

(0.63, -0.93),

(2.09,0.10),

(0.53, 1.43),

(1.85, 1.83),

(1.29, 0.41),

(-1.32, -0.12).

Six points in image plane z = 1 after motion:

(-0.21, -1.10),

(1.54, -1.41),

(1.39, 0.63),

(2.60, -0.01),

(1.20, -0.62),

(-1.01, 0.85),
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Computed E, R, R', T:

[ 0.27 -0.27 -0.02
E = 0.27 0.27 -0.59

L-0.41 0.43 -0.00]

[ 0.71 0.71 0.001
R = -0.71 0.71 -0.00

_ 0.00 -0.00 1.00]

0.32 0.25 0.91
R' = 0.67 -0.74 -0.031,

L0.67 0.63 -0.401

0.59
T = -0.02

0.39
L(T, R) = 0.00.

L(-T, R) = 0.00.

L(T, R') = 6.95.

L(-T, R') = 6.95.

min[L(T, R), L(-T, R)] = 0.00.

min[L(T, R'), L(-T, R')] = 6.95.

Thus the algorithm gives the correct rotation R = R.

Simulation 2

1/[ 2 1/1 0

To = (0,0, -)t, Ro = -1/2 1/i/ 0
0 1 ]

Eight points in image plane z = 1 before motion:

(-0.04, 0.96),

(-0.09, -1.22),

(-0.67, 0.91),

(1.17, 1.29),

(1.10,0.65),

(-0.13, -0.98),

(-1.13, -1.19),

(1.03, -0.37).

Eight points in image plane z = 1 after motion:

(0.41,0.44),

(-0.60, -0.52),

(0.10,0.67),

(1.07,0.06),

(0.62, -0.16),

(-0.45, -0.35),

(-0.89, -0.02),

(0.29, -0.62).

Computed E, R, R', T:

[-0.50 0.50 0.00.
E = -0.50 -0.50 -0.00

L-0.00 0.00 0.00]

-0.71 -0.71 -0.00
R = 0.71 -0.71 -0.00 ,

L-0.00 -0.00 1.00]

0.71 0.71 0.00,
R' = -0.71 0.71 0.00,

_-0.00 0.00 1.00]

-0.00
T = 0.00J.

0.71-
L(T, R) = 12.33.

L(-T, R) = 9.40.

L(T, R') = 4.03.

L(-T, R') = 0.00.

min[L(T, R), L(-T, R)] = 9.40.

min[L(T, R'), L(-T, R')] = 0.00.

Thus the algorithm gives the correct rotation, R = R', and
the correcttranslation orientation, T0/|UT0 I =-T/IT||. The
latter is due to L(-T, R') < L(T, R').

APPENDIX A

Lemma
E = T X R, with T X T, = 0 if and only if ROtE + EtRO = 0 and
TotE = 0.

Proof

Only-If Part
Assume that E = T X R, with T X T0 = 0. Then it follows
that

E= [TXr 1,TXr 2 ,TXr 3J,

ROtE = [(ri, T X rj)],

EtRO = [(T X ri, rj)],

TOtE = [(T0, T X r1), (T0, T X r2), (TO, T X r3)],

where Ro - [rl, r2, r3]. And hence we obtain

RotE + EtRo = by (ri, T X rj) + (T X r1 , rj) = 0,

TotE = by (TO, T X ri) = 0.

If Part
Assume that RotE + EtRo = 0 and TOtE = 0. Let G = EROt.
Then it is easy to see that

Gt = RoEt = Ro(-RotERot) = -ERot,

which indicates that G is a skew-symmetrical matrix. Thus
there is a T (see Yen and Huang1 2) so that

Zhuang et al.



1500 J. Opt. Soc. Am. A/Vol. 3, No. 9/September 1986

E= GRB = T X>R<,

and hence

(T, X T)' = TOtG = TotERoI = 0,

which completes the "if" part. Q.E.D.
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